Validation of the Particle-Based Multi-Analyte Technology for Detection of Anti-PhosphatidylSerine/Prothrombin Antibodies

Biomedicines. 2020 Dec 17;8(12):622. doi: 10.3390/biomedicines8120622.

Abstract

Among "extra-criteria" antiphospholipid antibodies (aPL), anti-phosphatidylserine/prothrombin (aPS/PT) antibodies, are considered a part of risk assessment strategies when investigating patients suspected of having antiphospholipid syndrome (APS). aPL detection is currently performed by solid-phase assays to identify anti-cardiolipin (aCL), anti-β2glycoprotein I (aβ2GPI) and aPS/PT antibodies, but new techniques are emerging. Among these, particle-based multi-analyte technology (PMAT), which allows the full automation and simultaneous digital detection of autoantibodies and proteins, including IgG, IgA and IgM isotypes of aCL, aβ2GPI and aPS/PT. The aim of this study was to investigate the agreement of aPS/PT testing between enzyme-linked immunosorbent assay (ELISA) and the PMAT platform. A total of 94 patients were enrolled in the study, including 71 patients with confirmed APS and 23 "aPL carriers". aPS/PT IgG showed a moderate binomial agreement between ELISA and PMAT (k = 0.57, 95% CI 0.45-0.75), and aPS/PT IgM showed a moderate agreement (k = 0.60, 95% CI 0.45-0.75). Moreover, when considering the continuous agreement, both aPS/PT IgG and IgM showed a statistically significant correlation between ELISA and PMAT (Spearman's correlation = 0.69, p < 0.001 and 0.72, p < 0.001, respectively). This study demonstrates that PMAT technology is a reliable method for aPS/PT IgG and IgM testing when compared to the available commercial ELISA kit.

Keywords: anti-phosphatidylserine/prothrombin antibodies; antiphospholipid antibodies; antiphospholipid syndrome.