Towards Easy-to-Use Bacteria Sensing: Modeling and Simulation of a New Environmental Impedimetric Biosensor in Fluids

Sensors (Basel). 2021 Feb 21;21(4):1487. doi: 10.3390/s21041487.

Abstract

Conventional pathogenic bacteria-detection methods are lab-bound, time-consuming and need trained personnel. Microelectrodes can be used to recognize harmful microorganisms by dielectric impedance spectroscopy. However, crucial for this spectroscopy method are the spatial dimensions and layout of the electrodes, as the corresponding distribution of the electric field defines the sensor system parameters such as sensitivity, SNR, and dynamic range. Therefore, a variety of sensor models are created and evaluated. FEM simulations in 2D and 3D are conducted for this impedimetric sensor. The authors tested differently shaped structures, verified the linear influence of the excitation amplitude and developed a mathematical concept for a quality factor that practically allows us to distinguish arbitrary sensor designs and layouts. The effect of guard electrodes blocking outer influences on the electric field are investigated, and essential configurations are explored. The results lead to optimized electronic sensors in terms of geometrical dimensions. Possible material choices for real sensors as well as design and layout recommendations are presented.

Keywords: FEM simulation; bacteria detection; bacteria sensor; biosensor; electrochemical sensor; impedance spectroscopy; pathogens; sensor design.

MeSH terms

  • Bacteria / isolation & purification*
  • Biosensing Techniques*
  • Dielectric Spectroscopy*
  • Electric Impedance
  • Microelectrodes*

Grants and funding