Essential Oils of Seven Lamiaceae Plants and Their Antioxidant Capacity

Molecules. 2021 Jun 22;26(13):3793. doi: 10.3390/molecules26133793.

Abstract

Oxidative stress has been reported as a cause of many diseases like Parkinson's, Alzheimer's, cardiovascular disease, and diabetes. Oxidative stress can also lead to cancer formation by promoting tumor development and progression. Antioxidants derived from Lamiaceae plants play an important role in natural medicine, pharmacology, cosmetology, and aromatherapy. Herein, we examine the antioxidative capacity of essential oils from seven aromatic Lamiaceae plants against the synthetic radicals DPPH and ABTS. Among the essential oils analyzed, the most robust scavenging capacities were found in mixtures of volatile compounds from thyme and savory. The scavenging activity of tested EOs against the ABTS radical was clearly higher than activity towards DPPH. Analysis of essential oils with weaker antioxidant activity has shown that volatile compounds from marjoram, sage, and hyssop were more active than EOs from lavender and mint. It can be suggested that the potent antioxidant capacity of thyme (Thymus vulgaris) and savory (Satyreja hortensis) are related to a high level of phenolic constituents, such as thymol and carvacrol. On the other hand, the elevated antioxidative power of marjoram, sage, and hyssop essential oils may also be due to their terpinene, o-cymene, terpinolene, and terpinen-4-ol constituents. Although non-phenolic components are less active than thymol or carvacrol, they may affect antioxidant capacity synergistically.

Keywords: ABTS; DPPH; antioxidant; hyssop; marjoram; phenolic constituents of essential oils; sage; savory; thyme.

MeSH terms

  • Antioxidants / chemistry*
  • Lamiaceae / chemistry*
  • Oils, Volatile / chemistry*

Substances

  • Antioxidants
  • Oils, Volatile