Highly Regioselective Synthesis of Bisadduct[C70] Additive toward the Enhanced Performance of Perovskite Solar Cells

Nanomaterials (Basel). 2022 Jul 9;12(14):2355. doi: 10.3390/nano12142355.

Abstract

The high-regioselective synthesis of bisadducts based on low-symmetry C70 has been a challenging work due to the large amount of formed regioisomers, which require tedious separation procedures for isomeric purity and block their application in different fields. Herein, we successfully obtained a novel 1, 2, 3, 4-bis(triazolino)fullerene[C70] 2 with high regioselectivity by the rigid tether-directed regioselective synthesis strategy and the corresponding molecular structure was unambiguously confirmed by single-crystal X-ray crystallography characterization. The crystal data clearly show that the addition occurs at the domain of corannulene moiety at the end of ellipse C70 as well as the 1, 2, 3, 4-addition sites located at one hexagonal ring with a [6,6]-closed addition pattern. Furthermore, 2 was applied as an additive of perovskite layer to construct MAPbI3-based regular (n-i-p) perovskite solar cells, affording the power conversion efficiency (PCE) of 18.59%, which is a 7% enhancement relative to that of control devices without additive.

Keywords: C70; additive; bisadduct; fullerene; perovskite solar cells; regioselectivity; rigid tether.