Mechanical Property Analysis and Calculation Method Modification of Steel-Reinforced High-Strength Concrete Columns

Materials (Basel). 2022 Oct 2;15(19):6863. doi: 10.3390/ma15196863.

Abstract

The existing studies lack research on the ductility of steel-reinforced high-strength concrete (SRHC) columns and current specifications restricted the use of high-strength concrete in steel-reinforced concrete (SRC) columns. To compensate for the shortcomings of the existing research and promote the application of high-strength concrete in SRC structures, we test six SRHC columns and one SRC column to examine the effects of the steel content, eccentric distance, and slenderness ratio on the ductility, bearing capacity, and failure mode of SRHC columns. Further, Abaqus finite element models are established to predict the influences of more parameters on post-peak ductility and analyze the relationship between strain development of the concrete and the decrease in bearing capacity of SRHC columns. The results show that the penetration of cracks into aggregate during failure is the primary reason for the poor ductility of the SRHC columns. Improving the confinement effect of the stirrups on concrete is the most effective measure to enhance the ductility of the SRHC columns. The decline in the stirrup spacing from 100 mm to 50 mm increased the ductility coefficient from 1.47 to 5.56. The effect of the steel content, stirrup strength, and slenderness ratio on the ductility coefficient of SRHC columns is less than 30%. After analyzing the reason for the error of current specifications, a modified formula with an error of less than 5% is developed.

Keywords: bearing capacity; ductility; finite element analysis; formula modification; high-strength concrete; steel-reinforced concrete column.

Grants and funding

This research received no external funding.