Specific Signal Transduction of Constitutively Activating (D576G) and Inactivating (R476H) Mutants of Agonist-Stimulated Luteinizing Hormone Receptor in Eel

Int J Mol Sci. 2023 May 23;24(11):9133. doi: 10.3390/ijms24119133.

Abstract

We investigated the mechanism of signal transduction using inactivating (R476H) and activating (D576G) mutants of luteinizing hormone receptor (LHR) of eel at the conserved regions of intracellular loops II and III, respectively, naturally occurring in mammalian LHR. The expression of D576G and R476H mutants was approximately 58% and 59%, respectively, on the cell surface compared to those of eel LHR-wild type (wt). In eel LHR-wt, cAMP production increased upon agonist stimulation. Cells expressing eel LHR-D576G, a highly conserved aspartic acid residue, exhibited a 5.8-fold increase in basal cAMP response; however, the maximal cAMP response by high-agonist stimulation was approximately 0.62-fold. Mutation of a highly conserved arginine residue in the second intracellular loop of eel LHR (LHR-R476H) completely impaired the cAMP response. The rate of loss in cell-surface expression of eel LHR-wt and D576G mutant was similar to the agonist recombinant (rec)-eel LH after 30 min. However, the mutants presented rates of loss higher than eel LHR-wt did upon rec-eCG treatment. Therefore, the activating mutant constitutively induced cAMP signaling. The inactivating mutation resulted in the loss of LHR expression on the cell surface and no cAMP signaling. These data provide valuable information regarding the structure-function relationship of LHR-LH complexes.

Keywords: cAMP response; cell-surface loss of receptor; constitutively activating mutation; eel LHR; inactivating mutation.

MeSH terms

  • Animals
  • Chorionic Gonadotropin / metabolism
  • Cyclic AMP* / metabolism
  • Eels / genetics
  • Eels / metabolism
  • Mammals / metabolism
  • Mutation
  • Receptors, LH* / metabolism
  • Signal Transduction

Substances

  • Receptors, LH
  • Cyclic AMP
  • Chorionic Gonadotropin