Two-Step Thermal Transformation of Multilayer Graphene Using Polymeric Carbon Source Assisted by Physical Vapor Deposited Copper

Materials (Basel). 2023 Aug 13;16(16):5603. doi: 10.3390/ma16165603.

Abstract

Direct in situ growth of graphene on dielectric substrates is a reliable method for overcoming the challenges of complex physical transfer operations, graphene performance degradation, and compatibility with graphene-based semiconductor devices. A transfer-free graphene synthesis based on a controllable and low-cost polymeric carbon source is a promising approach for achieving this process. In this paper, we report a two-step thermal transformation method for the copper-assisted synthesis of transfer-free multilayer graphene. Firstly, we obtained high-quality polymethyl methacrylate (PMMA) film on a 300 nm SiO2/Si substrate using a well-established spin-coating process. The complete thermal decomposition loss of PMMA film was effectively avoided by introducing a copper clad layer. After the first thermal transformation process, flat, clean, and high-quality amorphous carbon films were obtained. Next, the in situ obtained amorphous carbon layer underwent a second copper sputtering and thermal transformation process, which resulted in the formation of a final, large-sized, and highly uniform transfer-free multilayer graphene film on the surface of the dielectric substrate. Multi-scale characterization results show that the specimens underwent different microstructural evolution processes based on different mechanisms during the two thermal transformations. The two-step thermal transformation method is compatible with the current semiconductor process and introduces a low-cost and structurally controllable polymeric carbon source into the production of transfer-free graphene. The catalytic protection of the copper layer provides a new direction for accelerating the application of graphene in the field of direct integration of semiconductor devices.

Keywords: dielectric substrate; metallic copper catalyst; polymeric carbon source; transfer-free graphene film; two-step thermal transformation.