Influence of Curing Temperature on the Performance of Calcined Coal Gangue-Limestone Blended Cements

Materials (Basel). 2024 Apr 9;17(8):1721. doi: 10.3390/ma17081721.

Abstract

The utilization of calcined coal gangue (CCG) and limestone for the preparation of blended cement is an efficient approach to address the issue of coal gangue disposal. However, the compressive strength development of blended cement is slow, particularly at high substitution levels of CCG. Therefore, this study aimed to promote the hydration and mechanical properties of the calcined coal gangue-limestone blended cements by increasing the curing temperature. In this study, the samples were cured at two different temperatures, namely 20 and 40 °C. The four groups of samples contained 15 wt.%, 30 wt.%, 45 wt.% and 60 wt.% cement substitutions using CCG and limestone (2:1 mass ratio). The compressive strength, hydration and microstructure were investigated at the ages of 1 to 28 d. X-ray diffraction (XRD) and thermogravimetry (TG) were used to study the hydration behavior of samples. Mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) were used to determine the microstructure of the samples. The results indicate that an increase in curing temperature significantly promotes the compressive strength of the calcined coal gangue-limestone blended cements from 1 to 28 d. The microstructural analysis indicates that increasing the curing temperature not only promotes cement hydration but also facilitates the reaction of CCG, which precipitated more hydrates such as C-A-S-H gel, Hc and Mc. These hydrates are conducive to refining the pore structures and densifying the microstructure, which sufficiently explains the enhanced compressive strength of the calcined coal gangue-limestone blended cements.

Keywords: calcined coal gangue; compressive strength; curing temperature; hydration; limestone; microstructure.

Grants and funding