Conserved Protein Domain Family
Ebola_HIV-1-like_HR1-HR2

?
cl02885: Ebola_HIV-1-like_HR1-HR2 Superfamily 
Click on image for an interactive view with Cn3D
heptad repeat 1-heptad repeat 2 region (ectodomain) of the transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including Ebola virus and human immunodeficiency virus type 1 (HIV-1)
This domain superfamily spans both heptad repeats of the glycoprotein (gp)/transmembrane subunit of various endogenous retroviruses (ERVs) and infectious retroviruses, including Ebola virus gp2, Rous sarcoma virus gp37, human immunodeficiency virus type 1 (HIV-1) gp41, and the envelope proteins of various ERVs. In the HR1-HR2 region of Ebola virus and RSV, the linker region between the two repeats includes a CKS17-like immunosuppressive region and a CX6C motif that forms an intra-subunit disulfide bond; MMTV, HIV-1, HERV-K endogenous retroviruses and related sequences lack a canonical CSK17-like sequence, and CX6C motif. N-terminal to the HR1-HR2 region is a fusion peptide (FP), and C-terminal, is a membrane-spanning region (MSR). Viral infection involves the formation of a trimer-of-hairpins structure (three HR1 helices, buttressed by three HR2 helices lying in antiparallel orientation). In this structure, the FP (inserted in the host cell membrane) and MSR (inserted in the viral membrane) are in close proximity. ERVs are likely to originate from ancient germ-line infections by active retroviruses. Some modern ERVs, those that integrated into the host genome post-speciation, have a currently active exogenous counterpart, such as Jaagsiekte sheep retrovirus (JSRV), feline leukemia virus (FeLV), and avian leukemia virus (ALV). Some ERVs play specific roles in the host, including placental development, protection of the host from infection by related pathogenic and exogenous retroviruses, and genome plasticity. Human ERVs (HERVs) belonging to this superfamily include Syncytin-1 (HERV-W_c7q21.2/ ERVWE1), and Syncytin-2 (HERV-FRD_6p24.1) which are expressed in the placenta, and are fusogenic, although they have a different cell specificity for fusion. Syncytin-2, but not Syncytin-1, is immunosuppressive; its immunosuppressive domain may protect the fetus from the mother's immune system. Syncytin-1 may participate in the formation of the placental trophoblast; it is also implicated in cell fusions between cancer and host cells and between cancer cell, and in human osteclast fusion. This superfamily also contains human HERV-R_c7q21.2 (ERV-3), which is also expressed in the placenta, but is not fusogenic, and has an immunosuppressive domain, but lacks a fusion peptide. It is unclear whether ERV-3 has a critical biological role. Included in this superfamily are ERVs from domestic sheep that are related to JSRV, the agent of transmissible lung cancer in sheep; for example, enJSRV-26 that retains an intact genome. These endogenous JSRVs protect the sheep against JSRV infection and are required for sheep placental development.
Links
?
Taxonomy: root
PubMed: 95 links
Protein: Related Protein
Related Structure
Statistics
?
Accession: cl02885
PSSM Id: 413513
Name: Ebola_HIV-1-like_HR1-HR2
Created: 8-Feb-2008
Updated: 24-Nov-2020
| Disclaimer | Privacy statement | Accessibility |
NCBI Home NCBI Search NCBI SiteMap