Conserved Protein Domain Family
Membrane-FADS-like

?
cl00615: Membrane-FADS-like Superfamily 
The membrane fatty acid desaturase (Membrane_FADS)-like CD includes membrane FADSs, alkane hydroxylases, beta carotene ketolases (CrtW-like), hydroxylases (CrtR-like), and other related proteins. They are present in all groups of organisms with the exception of archaea. Membrane FADSs are non-heme, iron-containing, oxygen-dependent enzymes involved in regioselective introduction of double bonds in fatty acyl aliphatic chains. They play an important role in the maintenance of the proper structure and functioning of biological membranes. Alkane hydroxylases are bacterial, integral-membrane di-iron enzymes that share a requirement for iron and oxygen for activity similar to that of membrane FADSs, and are involved in the initial oxidation of inactivated alkanes. Beta-carotene ketolase and beta-carotene hydroxylase are carotenoid biosynthetic enzymes for astaxanthin and zeaxanthin, respectively. This superfamily domain has extensive hydrophobic regions that would be capable of spanning the membrane bilayer at least twice. Comparison of these sequences also reveals three regions of conserved histidine cluster motifs that contain eight histidine residues: HXXX(X)H, HXX(X)HH, and HXXHH (an additional conserved histidine residue is seen between clusters 2 and 3). Spectroscopic and genetic evidence point to a nitrogen-rich coordination environment located in the cytoplasm with as many as eight histidines coordinating the two iron ions and a carboxylate residue bridging the two metals in the Pseudomonas oleovorans alkane hydroxylase (AlkB). In addition, the eight histidine residues are reported to be catalytically essential and proposed to be the ligands for the iron atoms contained within the rat stearoyl CoA delta-9 desaturase.
Statistics
?
Accession: cl00615
PSSM Id: 294412
Name: Membrane-FADS-like
Created: 8-Feb-2008
Updated: 19-Sep-2018
| Disclaimer | Privacy statement | Accessibility |
NCBI Home NCBI Search NCBI SiteMap