Conserved Protein Domain Family

cl11393: Peptidase_M14_like Superfamily 
Click on image for an interactive view with Cn3D
M14 family of metallocarboxypeptidases and related proteins
The M14 family of metallocarboxypeptidases (MCPs), also known as funnelins, are zinc-binding carboxypeptidases (CPs) which hydrolyze single, C-terminal amino acids from polypeptide chains, and have a recognition site for the free C-terminal carboxyl group, which is a key determinant of specificity. Two major subfamilies of the M14 family, defined based on sequence and structural homology, are the A/B and N/E subfamilies. Enzymes belonging to the A/B subfamily are normally synthesized as inactive precursors containing preceding signal peptide, followed by an N-terminal pro-region linked to the enzyme; these proenzymes are called procarboxypeptidases. The A/B enzymes can be further divided based on their substrate specificity; Carboxypeptidase A-like (CPA-like) enzymes favor hydrophobic residues while carboxypeptidase B-like (CPB-like) enzymes only cleave the basic residues lysine or arginine. The A forms have slightly different specificities, with Carboxypeptidase A1 (CPA1) preferring aliphatic and small aromatic residues, and CPA2 preferring the bulky aromatic side chains. Enzymes belonging to the N/E subfamily enzymes are not produced as inactive precursors and instead rely on their substrate specificity and subcellular compartmentalization to prevent inappropriate cleavage. They contain an extra C-terminal transthyretin-like domain, thought to be involved in folding or formation of oligomers. MCPs can also be classified based on their involvement in specific physiological processes; the pancreatic MCPs participate only in alimentary digestion and include carboxypeptidase A and B (A/B subfamily), while others, namely regulatory MCPs or the N/E subfamily, are involved in more selective reactions, mainly in non-digestive tissues and fluids, acting on blood coagulation/fibrinolysis, inflammation and local anaphylaxis, pro-hormone and neuropeptide processing, cellular response and others. Another MCP subfamily, is that of succinylglutamate desuccinylase /aspartoacylase, which hydrolyzes N-acetyl-L-aspartate (NAA), and deficiency in which is the established cause of Canavan disease. Another subfamily (referred to as subfamily C) includes an exceptional type of activity in the MCP family, that of dipeptidyl-peptidase activity of gamma-glutamyl-(L)-meso-diaminopimelate peptidase I which is involved in bacterial cell wall metabolism.
Taxonomy: root
PubMed: 77 links
Protein: Related Protein
Related Structure
Accession: cl11393
PSSM Id: 448239
Name: Peptidase_M14_like
Created: 29-May-2009
Updated: 8-Mar-2022
| Disclaimer | Privacy statement | Accessibility |
NCBI Home NCBI Search NCBI SiteMap