NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|152012529|gb|AAI50259|]
View 

ARAP2 protein, partial [Homo sapiens]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RhoGAP_ARAP cd04385
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
1044-1223 1.10e-96

RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


:

Pssm-ID: 239850  Cd Length: 184  Bit Score: 308.85  E-value: 1.10e-96
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1044 DGNALQDQQLSKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRAGKHQLEDVTAVLKSFL 1123
Cdd:cd04385     1 DGPALEDQQLTDNDIPVIVDKCIDFITQHGLMSEGIYRKNGKNSSVKKLLEAFRKDARSVQLREGEYTVHDVADVLKRFL 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1124 SDIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLF 1203
Cdd:cd04385    81 RDLPDPLLTSELHAEWIEAAELENKDERIARYKELIRRLPPINRATLKVLIGHLYRVQKHSDENQMSVHNLALVFGPTLF 160
                         170       180
                  ....*....|....*....|....
gi 152012529 1204 QTK----GQTSEEVNVIEDLINNY 1223
Cdd:cd04385   161 QTDehsvGQTSHEVKVIEDLIDNY 184
ArfGap_ARAP2 cd08856
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily ...
610-730 2.84e-79

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP2 localizes to the cell periphery and on focal adhesions composed of paxillin and vinculin, and functions downstream of RhoA to regulate focal adhesion dynamics. ARAP2 is a PI(3,4,5)P3-dependent Arf6 GAP that binds RhoA-GTP, but it lacks the predicted catalytic arginine in the RhoGAP domain and does not have RhoGAP activity. ARAP2 reduces Rac1oGTP levels by reducing Arf6oGTP levels through GAP activity. AGAP2 also binds to and regulates focal adhesion kinase (FAK). Thus, ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology.


:

Pssm-ID: 350081 [Multi-domain]  Cd Length: 121  Bit Score: 256.76  E-value: 2.84e-79
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  610 ETLSDYEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNELIELFIVIG 689
Cdd:cd08856     1 ETLSDYEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNELIELFIVVG 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 152012529  690 NKRANDFWAGNLQKDEELHMDSPVEKRKNFITQKYKEGKFR 730
Cdd:cd08856    81 NKPANLFWAANLFSEEDLHMDSDVEQRTPFITQKYKEGKFR 121
PH5_ARAP cd13259
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
1353-1473 1.29e-65

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 5; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the five PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270079  Cd Length: 121  Bit Score: 217.68  E-value: 1.29e-65
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1353 TIKHCSDRSTLGSIKEGILKIKEEPSKILSGNKFQDRYFVLRDGFLFLYKDVKSSKHDKMFSLSSMKFYRGVKKKMKPPT 1432
Cdd:cd13259     1 EAILLYLASKVGSTKHGMLKFREEPSKLLSGNKFQDRYFILNDECLLLYKDVKSSKPEKEWPLKSLKVYLGIKKKLKPPT 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 152012529 1433 SWGLTAYSEKHHWHLCCDSSQTQTEWMTSIFIAQHEYDIWP 1473
Cdd:cd13259    81 SWGFTVLLEKQQWYLCCDSQMEQREWMATILSAQHDGDIWP 121
RA_ARAP2 cd17227
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
1255-1352 2.09e-60

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 2 (ARAP2); ARAP2, also termed Centaurin-delta-1 (Cnt-d1), or Protein PARX, is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP), which promotes GLUT1-mediated basal glucose uptake by modifying sphingolipid metabolism through glucosylceramide synthase (GCS). ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. ARAP2 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


:

Pssm-ID: 340747  Cd Length: 98  Bit Score: 201.66  E-value: 2.09e-60
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1255 AGDLLIEVYVERKEPDCSIIIRISPVMEAEELTNDILAIKNIIPTKGDIWATFEVIENEELERPLHYKENVLEQVLRWSS 1334
Cdd:cd17227     1 AGDLLIEVYLEKKEPDCSIIIRVSPTMEAEELTNDVLEIKNIIPDKKDIWATFEVIENGELERPLHYKENVLEQVLQWSS 80
                          90
                  ....*....|....*...
gi 152012529 1335 LAEPGSAYLVVKRFLTAD 1352
Cdd:cd17227    81 LSEPGSAYLIVKRFQAAD 98
PH3_ARAP cd13256
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
822-932 1.03e-55

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270076  Cd Length: 110  Bit Score: 188.82  E-value: 1.03e-55
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  822 STFLCDFLYQAPSAAsKLSSEKKLLEETNKKWCVLEGGFLSYYENDKSTTPNGTININEVICLAIHKEDFYLNTGPIFIF 901
Cdd:cd13256     1 SVFHSGFLYKSPSAA-KPTLERRAREEFSRRWCVLEDGFLSYYESERSPEPNGEIDVSEIVCLAVSPPDTHPGDGFPFTF 79
                          90       100       110
                  ....*....|....*....|....*....|.
gi 152012529  902 EIYLPSERVFLFGAETSQAQRKWTEAIAKHF 932
Cdd:cd13256    80 ELYLESERLYLFGLETAEALHEWVKAIAKAF 110
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
414-506 4.86e-49

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270073  Cd Length: 94  Bit Score: 169.11  E-value: 4.86e-49
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKLSPQG-KRMFQKRWVKFDGLSISYYNNEKEMYSKGIIPLSAISTVRVQGDNKFEVVTTQRTFVFRVEKEEER 492
Cdd:cd13253     1 IKSGYLDKQGGQGnNKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVGDNKFELVTTNRTFVFRAESDDER 80
                          90
                  ....*....|....
gi 152012529  493 NDWISILLNALKSQ 506
Cdd:cd13253    81 NLWCSTLQAAISEY 94
PH4_ARAP cd13257
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
945-1040 6.70e-49

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 4; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the fourth PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270077  Cd Length: 91  Bit Score: 168.49  E-value: 6.70e-49
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  945 YDLIGQLFYKDCHALDQWRKGWFAMDKSSLHFCLQMQEVqGDRMHLRRLQELTISTMVQNgeklDVLLLVEKGRTLYIHG 1024
Cdd:cd13257     1 FERLGRLFYKDGLALDRAREGWFALDKSSLHACLQMQEV-EERMHLRKLQELSIQGDVQL----DVLVLVERRRTLYIQG 75
                          90
                  ....*....|....*.
gi 152012529 1025 HTKLDFTVWHTAIEKA 1040
Cdd:cd13257    76 ERKLDFTGWHTAIQKA 91
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
518-605 4.65e-47

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270074  Cd Length: 90  Bit Score: 163.36  E-value: 4.65e-47
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  518 PEKCGYLELRGYKAKIFTVLSGNSVWLCKNEQDFKSGLGITIIPMNVANVKQVDRtvkQSFEIITPYRSFSFTAETEKEK 597
Cdd:cd13254     6 PDKCGYLELRGYKAKVYAALMGDEVWLYKNEQDFRLGIGITVIEMNGANVKDVDR---RSFDLTTPYRSFSFTAESEHEK 82

                  ....*...
gi 152012529  598 QDWIEAVQ 605
Cdd:cd13254    83 QEWIEAVQ 90
 
Name Accession Description Interval E-value
RhoGAP_ARAP cd04385
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
1044-1223 1.10e-96

RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239850  Cd Length: 184  Bit Score: 308.85  E-value: 1.10e-96
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1044 DGNALQDQQLSKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRAGKHQLEDVTAVLKSFL 1123
Cdd:cd04385     1 DGPALEDQQLTDNDIPVIVDKCIDFITQHGLMSEGIYRKNGKNSSVKKLLEAFRKDARSVQLREGEYTVHDVADVLKRFL 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1124 SDIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLF 1203
Cdd:cd04385    81 RDLPDPLLTSELHAEWIEAAELENKDERIARYKELIRRLPPINRATLKVLIGHLYRVQKHSDENQMSVHNLALVFGPTLF 160
                         170       180
                  ....*....|....*....|....
gi 152012529 1204 QTK----GQTSEEVNVIEDLINNY 1223
Cdd:cd04385   161 QTDehsvGQTSHEVKVIEDLIDNY 184
ArfGap_ARAP2 cd08856
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily ...
610-730 2.84e-79

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP2 localizes to the cell periphery and on focal adhesions composed of paxillin and vinculin, and functions downstream of RhoA to regulate focal adhesion dynamics. ARAP2 is a PI(3,4,5)P3-dependent Arf6 GAP that binds RhoA-GTP, but it lacks the predicted catalytic arginine in the RhoGAP domain and does not have RhoGAP activity. ARAP2 reduces Rac1oGTP levels by reducing Arf6oGTP levels through GAP activity. AGAP2 also binds to and regulates focal adhesion kinase (FAK). Thus, ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology.


Pssm-ID: 350081 [Multi-domain]  Cd Length: 121  Bit Score: 256.76  E-value: 2.84e-79
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  610 ETLSDYEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNELIELFIVIG 689
Cdd:cd08856     1 ETLSDYEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNELIELFIVVG 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 152012529  690 NKRANDFWAGNLQKDEELHMDSPVEKRKNFITQKYKEGKFR 730
Cdd:cd08856    81 NKPANLFWAANLFSEEDLHMDSDVEQRTPFITQKYKEGKFR 121
PH5_ARAP cd13259
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
1353-1473 1.29e-65

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 5; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the five PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270079  Cd Length: 121  Bit Score: 217.68  E-value: 1.29e-65
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1353 TIKHCSDRSTLGSIKEGILKIKEEPSKILSGNKFQDRYFVLRDGFLFLYKDVKSSKHDKMFSLSSMKFYRGVKKKMKPPT 1432
Cdd:cd13259     1 EAILLYLASKVGSTKHGMLKFREEPSKLLSGNKFQDRYFILNDECLLLYKDVKSSKPEKEWPLKSLKVYLGIKKKLKPPT 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 152012529 1433 SWGLTAYSEKHHWHLCCDSSQTQTEWMTSIFIAQHEYDIWP 1473
Cdd:cd13259    81 SWGFTVLLEKQQWYLCCDSQMEQREWMATILSAQHDGDIWP 121
RA_ARAP2 cd17227
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
1255-1352 2.09e-60

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 2 (ARAP2); ARAP2, also termed Centaurin-delta-1 (Cnt-d1), or Protein PARX, is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP), which promotes GLUT1-mediated basal glucose uptake by modifying sphingolipid metabolism through glucosylceramide synthase (GCS). ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. ARAP2 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340747  Cd Length: 98  Bit Score: 201.66  E-value: 2.09e-60
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1255 AGDLLIEVYVERKEPDCSIIIRISPVMEAEELTNDILAIKNIIPTKGDIWATFEVIENEELERPLHYKENVLEQVLRWSS 1334
Cdd:cd17227     1 AGDLLIEVYLEKKEPDCSIIIRVSPTMEAEELTNDVLEIKNIIPDKKDIWATFEVIENGELERPLHYKENVLEQVLQWSS 80
                          90
                  ....*....|....*...
gi 152012529 1335 LAEPGSAYLVVKRFLTAD 1352
Cdd:cd17227    81 LSEPGSAYLIVKRFQAAD 98
PH3_ARAP cd13256
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
822-932 1.03e-55

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270076  Cd Length: 110  Bit Score: 188.82  E-value: 1.03e-55
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  822 STFLCDFLYQAPSAAsKLSSEKKLLEETNKKWCVLEGGFLSYYENDKSTTPNGTININEVICLAIHKEDFYLNTGPIFIF 901
Cdd:cd13256     1 SVFHSGFLYKSPSAA-KPTLERRAREEFSRRWCVLEDGFLSYYESERSPEPNGEIDVSEIVCLAVSPPDTHPGDGFPFTF 79
                          90       100       110
                  ....*....|....*....|....*....|.
gi 152012529  902 EIYLPSERVFLFGAETSQAQRKWTEAIAKHF 932
Cdd:cd13256    80 ELYLESERLYLFGLETAEALHEWVKAIAKAF 110
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
414-506 4.86e-49

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 169.11  E-value: 4.86e-49
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKLSPQG-KRMFQKRWVKFDGLSISYYNNEKEMYSKGIIPLSAISTVRVQGDNKFEVVTTQRTFVFRVEKEEER 492
Cdd:cd13253     1 IKSGYLDKQGGQGnNKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVGDNKFELVTTNRTFVFRAESDDER 80
                          90
                  ....*....|....
gi 152012529  493 NDWISILLNALKSQ 506
Cdd:cd13253    81 NLWCSTLQAAISEY 94
PH4_ARAP cd13257
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
945-1040 6.70e-49

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 4; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the fourth PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270077  Cd Length: 91  Bit Score: 168.49  E-value: 6.70e-49
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  945 YDLIGQLFYKDCHALDQWRKGWFAMDKSSLHFCLQMQEVqGDRMHLRRLQELTISTMVQNgeklDVLLLVEKGRTLYIHG 1024
Cdd:cd13257     1 FERLGRLFYKDGLALDRAREGWFALDKSSLHACLQMQEV-EERMHLRKLQELSIQGDVQL----DVLVLVERRRTLYIQG 75
                          90
                  ....*....|....*.
gi 152012529 1025 HTKLDFTVWHTAIEKA 1040
Cdd:cd13257    76 ERKLDFTGWHTAIQKA 91
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
518-605 4.65e-47

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270074  Cd Length: 90  Bit Score: 163.36  E-value: 4.65e-47
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  518 PEKCGYLELRGYKAKIFTVLSGNSVWLCKNEQDFKSGLGITIIPMNVANVKQVDRtvkQSFEIITPYRSFSFTAETEKEK 597
Cdd:cd13254     6 PDKCGYLELRGYKAKVYAALMGDEVWLYKNEQDFRLGIGITVIEMNGANVKDVDR---RSFDLTTPYRSFSFTAESEHEK 82

                  ....*...
gi 152012529  598 QDWIEAVQ 605
Cdd:cd13254    83 QEWIEAVQ 90
RhoGAP pfam00620
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.
1059-1206 2.80e-46

RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.


Pssm-ID: 459875  Cd Length: 148  Bit Score: 163.48  E-value: 2.80e-46
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  1059 PIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFkLRAGKHQLEDVTAVLKSFLSDIDDALLTKELYPY 1138
Cdd:pfam00620    1 PLIVRKCVEYLEKRGLDTEGIFRVSGSASRIKELREAFDRGPDVD-LDLEEEDVHVVASLLKLFLRELPEPLLTFELYEE 79
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 152012529  1139 WISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQTK 1206
Cdd:pfam00620   80 FIEAAKLPDEEERLEALRELLRKLPPANRDTLRYLLAHLNRVAQNSDVNKMNAHNLAIVFGPTLLRPP 147
RhoGAP smart00324
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ...
1057-1223 4.38e-45

GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers.


Pssm-ID: 214618  Cd Length: 174  Bit Score: 160.89  E-value: 4.38e-45
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   1057 DVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFkLRAGKHQLEDVTAVLKSFLSDIDDALLTKELY 1136
Cdd:smart00324    2 PIPIIVEKCIEYLEKRGLDTEGIYRVSGSKSRVKELRDAFDSGPDPD-LDLSEYDVHDVAGLLKLFLRELPEPLITYELY 80
                            90       100       110       120       130       140       150       160
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   1137 PYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQTKGQTSEEV--- 1213
Cdd:smart00324   81 EEFIEAAKLEDETERLRALRELLSLLPPANRATLRYLLAHLNRVAEHSEENKMTARNLAIVFGPTLLRPPDGEVASLkdi 160
                           170
                    ....*....|....
gi 152012529   1214 ----NVIEDLINNY 1223
Cdd:smart00324  161 rhqnTVIEFLIENA 174
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
616-731 1.06e-43

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 154.69  E-value: 1.06e-43
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   616 EVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDasIWSNELIELFIVIGNKRAND 695
Cdd:pfam01412    2 RVLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVHISKVRSLTLD--TWTDEQLELMKAGGNDRANE 79
                           90       100       110
                   ....*....|....*....|....*....|....*.
gi 152012529   696 FWAGNLQKDEELHMDSPVEKRKNFITQKYKEGKFRK 731
Cdd:pfam01412   80 FWEANLPPSYKPPPSSDREKRESFIRAKYVEKKFAK 115
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
624-729 3.34e-32

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 122.06  E-value: 3.34e-32
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529    624 NESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAGNLQK 703
Cdd:smart00105    7 IPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLGVHISKVRSLTLDT--WTEEELRLLQKGGNENANSIWESNLDD 84
                            90       100
                    ....*....|....*....|....*..
gi 152012529    704 DEELHMDSPV-EKRKNFITQKYKEGKF 729
Cdd:smart00105   85 FSLKPPDDDDqQKYESFIAAKYEEKLF 111
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
624-731 1.27e-26

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 112.56  E-value: 1.27e-26
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  624 NESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDasIWSNELIELFIVIGNKRANDFWAGNLQK 703
Cdd:COG5347    17 DSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLGVHISKVKSLTLD--NWTEEELRRMEVGGNSNANRFYEKNLLD 94
                          90       100       110
                  ....*....|....*....|....*....|..
gi 152012529  704 DEELHM----DSPVekRKNFITQKYKEGKFRK 731
Cdd:COG5347    95 QLLLPIkakyDSSV--AKKYIRKKYELKKFID 124
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
414-504 7.43e-13

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 66.03  E-value: 7.43e-13
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529    414 VKSGWLDKLSPQGKRMFQKRWVKFDGLSISYYNNEKEMYS---KGIIPLSAIsTVRVQGDNK-------FEVVTTQR-TF 482
Cdd:smart00233    2 IKEGWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKDKKSykpKGSIDLSGC-TVREAPDPDsskkphcFEIKTSDRkTL 80
                            90       100
                    ....*....|....*....|..
gi 152012529    483 VFRVEKEEERNDWISILLNALK 504
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1366-1467 1.99e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 64.88  E-value: 1.99e-12
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   1366 IKEGILKIKEEPSKilsgNKFQDRYFVLRDGFLFLYKD---VKSSKHDKMFSLSSMKFYRGVKKKMKP-PTSWGLTaYSE 1441
Cdd:smart00233    2 IKEGWLYKKSGGGK----KSWKKRYFVLFNSTLLYYKSkkdKKSYKPKGSIDLSGCTVREAPDPDSSKkPHCFEIK-TSD 76
                            90       100
                    ....*....|....*....|....*.
gi 152012529   1442 KHHWHLCCDSSQTQTEWMTSIFIAQH 1467
Cdd:smart00233   77 RKTLLLQAESEEEREKWVEALRKAIA 102
PH pfam00169
PH domain; PH stands for pleckstrin homology.
414-504 1.37e-11

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 62.58  E-value: 1.37e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   414 VKSGWLDKLSPQGKRMFQKRWVKFDGLSISYYNNEKEMYS---KGIIPLSAISTVRV------QGDNKFEVVTTQ----R 480
Cdd:pfam00169    2 VKEGWLLKKGGGKKKSWKKRYFVLFDGSLLYYKDDKSGKSkepKGSISLSGCEVVEVvasdspKRKFCFELRTGErtgkR 81
                           90       100
                   ....*....|....*....|....
gi 152012529   481 TFVFRVEKEEERNDWISILLNALK 504
Cdd:pfam00169   82 TYLLQAESEEERKDWIKAIQSAIR 105
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
609-697 9.16e-11

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 66.03  E-value: 9.16e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  609 AETLSD-YEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIV 687
Cdd:PLN03114    3 SENLNDkISVFKKLKAKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGVHISFVRSTNLDS--WSSEQLKMMIY 80
                          90
                  ....*....|
gi 152012529  688 IGNKRANDFW 697
Cdd:PLN03114   81 GGNNRAQVFF 90
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
842-928 4.95e-10

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 57.94  E-value: 4.95e-10
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529    842 EKKLLEETNKKWCVLEGGFLSYYENDK---STTPNGTININEVICLAIHKEDfylNTGPIFIFEIYLPSERVFLFGAETS 918
Cdd:smart00233   11 SGGGKKSWKKRYFVLFNSTLLYYKSKKdkkSYKPKGSIDLSGCTVREAPDPD---SSKKPHCFEIKTSDRKTLLLQAESE 87
                            90
                    ....*....|
gi 152012529    919 QAQRKWTEAI 928
Cdd:smart00233   88 EEREKWVEAL 97
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
518-609 1.27e-08

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 54.09  E-value: 1.27e-08
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529    518 PEKCGYLELRGYKA-----KIFTVLSGNSVWLCKNEQDFKSGLGITIIPMNVANVKQVDRT----VKQSFEIITPYR-SF 587
Cdd:smart00233    1 VIKEGWLYKKSGGGkkswkKRYFVLFNSTLLYYKSKKDKKSYKPKGSIDLSGCTVREAPDPdsskKPHCFEIKTSDRkTL 80
                            90       100
                    ....*....|....*....|..
gi 152012529    588 SFTAETEKEKQDWIEAVQQSIA 609
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1366-1467 1.02e-07

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 51.79  E-value: 1.02e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  1366 IKEGILKIKEEPSKilsgNKFQDRYFVLRDGFLFLYKDVKSSKHDK---MFSLSSMKFYRGVKKKMKP-PTSWGLTAY-- 1439
Cdd:pfam00169    2 VKEGWLLKKGGGKK----KSWKKRYFVLFDGSLLYYKDDKSGKSKEpkgSISLSGCEVVEVVASDSPKrKFCFELRTGer 77
                           90       100
                   ....*....|....*....|....*...
gi 152012529  1440 SEKHHWHLCCDSSQTQTEWMTSIFIAQH 1467
Cdd:pfam00169   78 TGKRTYLLQAESEEERKDWIKAIQSAIR 105
RA pfam00788
Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); ...
1260-1347 1.75e-06

Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Recent evidence (not yet in MEDLINE) shows that some RA domains do NOT bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase.


Pssm-ID: 425871  Cd Length: 93  Bit Score: 47.71  E-value: 1.75e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  1260 IEVYVERKEPDC-SIIIRISPVMEAEELTNDILAIKNIIPTKGDiWATFEVIENEELERPLHYKENVLEQVLRWSSlaEP 1338
Cdd:pfam00788    5 LKVYTEDGKPGTtYKTILVSSSTTAEEVIEALLEKFGLEDDPRD-YVLVEVLERGGGERRLPDDECPLQIQLQWPR--DA 81

                   ....*....
gi 152012529  1339 GSAYLVVKR 1347
Cdd:pfam00788   82 SDSRFLLRK 90
PH pfam00169
PH domain; PH stands for pleckstrin homology.
851-928 5.28e-06

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 46.79  E-value: 5.28e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   851 KKWCVLEGGFLSYYEND---KSTTPNGTININEVICLAIHKEDfylNTGPIFIFEIYLPS---ERVFLFGAETSQAQRKW 924
Cdd:pfam00169   20 KRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVEVVASD---SPKRKFCFELRTGErtgKRTYLLQAESEEERKDW 96

                   ....
gi 152012529   925 TEAI 928
Cdd:pfam00169   97 IKAI 100
PH pfam00169
PH domain; PH stands for pleckstrin homology.
518-609 2.98e-04

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 41.78  E-value: 2.98e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   518 PEKCGYLELRGYKAKI-----FTVLSGNSVWLCKNEQDFKSGLGITIIPMN----VANVKQVDRTVKQSFEIIT----PY 584
Cdd:pfam00169    1 VVKEGWLLKKGGGKKKswkkrYFVLFDGSLLYYKDDKSGKSKEPKGSISLSgcevVEVVASDSPKRKFCFELRTgertGK 80
                           90       100
                   ....*....|....*....|....*
gi 152012529   585 RSFSFTAETEKEKQDWIEAVQQSIA 609
Cdd:pfam00169   81 RTYLLQAESEEERKDWIKAIQSAIR 105
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
949-1041 2.99e-03

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 38.68  E-value: 2.99e-03
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529    949 GQLFYKDCHALDQWRKGWFAMDKSSLHFCLQMQEVQGDR-MHLRRLQELTISTMVQNGEKLD---VLLLVEKGRTLYIHG 1024
Cdd:smart00233    5 GWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKDKKSYKpKGSIDLSGCTVREAPDPDSSKKphcFEIKTSDRKTLLLQA 84
                            90
                    ....*....|....*..
gi 152012529   1025 HTKLDFTVWHTAIEKAA 1041
Cdd:smart00233   85 ESEEEREKWVEALRKAI 101
 
Name Accession Description Interval E-value
RhoGAP_ARAP cd04385
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
1044-1223 1.10e-96

RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239850  Cd Length: 184  Bit Score: 308.85  E-value: 1.10e-96
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1044 DGNALQDQQLSKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRAGKHQLEDVTAVLKSFL 1123
Cdd:cd04385     1 DGPALEDQQLTDNDIPVIVDKCIDFITQHGLMSEGIYRKNGKNSSVKKLLEAFRKDARSVQLREGEYTVHDVADVLKRFL 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1124 SDIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLF 1203
Cdd:cd04385    81 RDLPDPLLTSELHAEWIEAAELENKDERIARYKELIRRLPPINRATLKVLIGHLYRVQKHSDENQMSVHNLALVFGPTLF 160
                         170       180
                  ....*....|....*....|....
gi 152012529 1204 QTK----GQTSEEVNVIEDLINNY 1223
Cdd:cd04385   161 QTDehsvGQTSHEVKVIEDLIDNY 184
ArfGap_ARAP2 cd08856
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily ...
610-730 2.84e-79

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP2 localizes to the cell periphery and on focal adhesions composed of paxillin and vinculin, and functions downstream of RhoA to regulate focal adhesion dynamics. ARAP2 is a PI(3,4,5)P3-dependent Arf6 GAP that binds RhoA-GTP, but it lacks the predicted catalytic arginine in the RhoGAP domain and does not have RhoGAP activity. ARAP2 reduces Rac1oGTP levels by reducing Arf6oGTP levels through GAP activity. AGAP2 also binds to and regulates focal adhesion kinase (FAK). Thus, ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology.


Pssm-ID: 350081 [Multi-domain]  Cd Length: 121  Bit Score: 256.76  E-value: 2.84e-79
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  610 ETLSDYEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNELIELFIVIG 689
Cdd:cd08856     1 ETLSDYEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNELIELFIVVG 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 152012529  690 NKRANDFWAGNLQKDEELHMDSPVEKRKNFITQKYKEGKFR 730
Cdd:cd08856    81 NKPANLFWAANLFSEEDLHMDSDVEQRTPFITQKYKEGKFR 121
ArfGap_ARAP cd08837
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily ...
615-730 2.02e-74

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics.


Pssm-ID: 350066 [Multi-domain]  Cd Length: 116  Bit Score: 242.67  E-value: 2.02e-74
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  615 YEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNELIELFIVIGNKRAN 694
Cdd:cd08837     1 YEVAEKIWSNPANRFCADCGAPDPDWASINLCVVICKQCAGEHRSLGSNISKVRSLKMDTKVWTEELVELFLKLGNDRAN 80
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 152012529  695 DFWAGNLQKDEELHMDSPVEKRKNFITQKYKEGKFR 730
Cdd:cd08837    81 RFWAANLPPSEALHPDADSEQRREFITAKYREGKYR 116
PH5_ARAP cd13259
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
1353-1473 1.29e-65

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 5; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the five PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270079  Cd Length: 121  Bit Score: 217.68  E-value: 1.29e-65
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1353 TIKHCSDRSTLGSIKEGILKIKEEPSKILSGNKFQDRYFVLRDGFLFLYKDVKSSKHDKMFSLSSMKFYRGVKKKMKPPT 1432
Cdd:cd13259     1 EAILLYLASKVGSTKHGMLKFREEPSKLLSGNKFQDRYFILNDECLLLYKDVKSSKPEKEWPLKSLKVYLGIKKKLKPPT 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 152012529 1433 SWGLTAYSEKHHWHLCCDSSQTQTEWMTSIFIAQHEYDIWP 1473
Cdd:cd13259    81 SWGFTVLLEKQQWYLCCDSQMEQREWMATILSAQHDGDIWP 121
RA_ARAP2 cd17227
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
1255-1352 2.09e-60

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 2 (ARAP2); ARAP2, also termed Centaurin-delta-1 (Cnt-d1), or Protein PARX, is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP), which promotes GLUT1-mediated basal glucose uptake by modifying sphingolipid metabolism through glucosylceramide synthase (GCS). ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. ARAP2 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340747  Cd Length: 98  Bit Score: 201.66  E-value: 2.09e-60
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1255 AGDLLIEVYVERKEPDCSIIIRISPVMEAEELTNDILAIKNIIPTKGDIWATFEVIENEELERPLHYKENVLEQVLRWSS 1334
Cdd:cd17227     1 AGDLLIEVYLEKKEPDCSIIIRVSPTMEAEELTNDVLEIKNIIPDKKDIWATFEVIENGELERPLHYKENVLEQVLQWSS 80
                          90
                  ....*....|....*...
gi 152012529 1335 LAEPGSAYLVVKRFLTAD 1352
Cdd:cd17227    81 LSEPGSAYLIVKRFQAAD 98
ArfGap_ARAP3 cd17902
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily ...
615-730 3.22e-58

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP3 possesses a unique dual-specificity GAP activity for Arf6 and RhoA regulated by PI(3,4,5)P3 and a small GTPase Rap1-GTP. The RhoGAP activity of ARAP3 is enhanced by direct binding of Rap1-GTP to the Ras-association (RA) domain. ARAP3 is involved in regulation of cell shape and adhesion.


Pssm-ID: 350089 [Multi-domain]  Cd Length: 116  Bit Score: 196.28  E-value: 3.22e-58
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  615 YEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNELIELFIVIGNKRAN 694
Cdd:cd17902     1 YEVAEKIWSNKANRFCADCHASSPDWASINLCVVICKQCAGQHRSLGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRAN 80
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 152012529  695 DFWAGNLQKDEELHMDSPVEKRKNFITQKYKEGKFR 730
Cdd:cd17902    81 RFWAARLPASEALHPDATPEQRREFISRKYREGRFR 116
PH3_ARAP cd13256
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
822-932 1.03e-55

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270076  Cd Length: 110  Bit Score: 188.82  E-value: 1.03e-55
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  822 STFLCDFLYQAPSAAsKLSSEKKLLEETNKKWCVLEGGFLSYYENDKSTTPNGTININEVICLAIHKEDFYLNTGPIFIF 901
Cdd:cd13256     1 SVFHSGFLYKSPSAA-KPTLERRAREEFSRRWCVLEDGFLSYYESERSPEPNGEIDVSEIVCLAVSPPDTHPGDGFPFTF 79
                          90       100       110
                  ....*....|....*....|....*....|.
gi 152012529  902 EIYLPSERVFLFGAETSQAQRKWTEAIAKHF 932
Cdd:cd13256    80 ELYLESERLYLFGLETAEALHEWVKAIAKAF 110
ArfGap_ARAP1 cd17901
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily ...
616-730 6.00e-53

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP1 localizes to the plasma membrane, the Golgi complex, and endosomal compartments. It displays PI(3,4,5)P3-dependent ArfGAP activity that regulates Arf-, RhoA-, and Cdc42-dependent cellular events. For example, ARAP1 inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome.


Pssm-ID: 350088 [Multi-domain]  Cd Length: 116  Bit Score: 181.16  E-value: 6.00e-53
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  616 EVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNELIELFIVIGNKRAND 695
Cdd:cd17901     2 EVAEKIWSVESNRFCADCGSPKPDWASVNLCVVICKRCAGEHRGLGPSVSKVRSLKMDRKVWTEELIELFLLLGNGKANQ 81
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 152012529  696 FWAGNLQKDEELHMDSPVEKRKNFITQKYKEGKFR 730
Cdd:cd17901    82 FWAANVPPSEALCPSSSSEERRHFITAKYKEGKYR 116
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
414-506 4.86e-49

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 169.11  E-value: 4.86e-49
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKLSPQG-KRMFQKRWVKFDGLSISYYNNEKEMYSKGIIPLSAISTVRVQGDNKFEVVTTQRTFVFRVEKEEER 492
Cdd:cd13253     1 IKSGYLDKQGGQGnNKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVGDNKFELVTTNRTFVFRAESDDER 80
                          90
                  ....*....|....
gi 152012529  493 NDWISILLNALKSQ 506
Cdd:cd13253    81 NLWCSTLQAAISEY 94
PH4_ARAP cd13257
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
945-1040 6.70e-49

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 4; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the fourth PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270077  Cd Length: 91  Bit Score: 168.49  E-value: 6.70e-49
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  945 YDLIGQLFYKDCHALDQWRKGWFAMDKSSLHFCLQMQEVqGDRMHLRRLQELTISTMVQNgeklDVLLLVEKGRTLYIHG 1024
Cdd:cd13257     1 FERLGRLFYKDGLALDRAREGWFALDKSSLHACLQMQEV-EERMHLRKLQELSIQGDVQL----DVLVLVERRRTLYIQG 75
                          90
                  ....*....|....*.
gi 152012529 1025 HTKLDFTVWHTAIEKA 1040
Cdd:cd13257    76 ERKLDFTGWHTAIQKA 91
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
518-605 4.65e-47

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270074  Cd Length: 90  Bit Score: 163.36  E-value: 4.65e-47
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  518 PEKCGYLELRGYKAKIFTVLSGNSVWLCKNEQDFKSGLGITIIPMNVANVKQVDRtvkQSFEIITPYRSFSFTAETEKEK 597
Cdd:cd13254     6 PDKCGYLELRGYKAKVYAALMGDEVWLYKNEQDFRLGIGITVIEMNGANVKDVDR---RSFDLTTPYRSFSFTAESEHEK 82

                  ....*...
gi 152012529  598 QDWIEAVQ 605
Cdd:cd13254    83 QEWIEAVQ 90
RhoGAP pfam00620
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.
1059-1206 2.80e-46

RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.


Pssm-ID: 459875  Cd Length: 148  Bit Score: 163.48  E-value: 2.80e-46
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  1059 PIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFkLRAGKHQLEDVTAVLKSFLSDIDDALLTKELYPY 1138
Cdd:pfam00620    1 PLIVRKCVEYLEKRGLDTEGIFRVSGSASRIKELREAFDRGPDVD-LDLEEEDVHVVASLLKLFLRELPEPLLTFELYEE 79
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 152012529  1139 WISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQTK 1206
Cdd:pfam00620   80 FIEAAKLPDEEERLEALRELLRKLPPANRDTLRYLLAHLNRVAQNSDVNKMNAHNLAIVFGPTLLRPP 147
RhoGAP smart00324
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ...
1057-1223 4.38e-45

GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers.


Pssm-ID: 214618  Cd Length: 174  Bit Score: 160.89  E-value: 4.38e-45
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   1057 DVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFkLRAGKHQLEDVTAVLKSFLSDIDDALLTKELY 1136
Cdd:smart00324    2 PIPIIVEKCIEYLEKRGLDTEGIYRVSGSKSRVKELRDAFDSGPDPD-LDLSEYDVHDVAGLLKLFLRELPEPLITYELY 80
                            90       100       110       120       130       140       150       160
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   1137 PYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQTKGQTSEEV--- 1213
Cdd:smart00324   81 EEFIEAAKLEDETERLRALRELLSLLPPANRATLRYLLAHLNRVAEHSEENKMTARNLAIVFGPTLLRPPDGEVASLkdi 160
                           170
                    ....*....|....
gi 152012529   1214 ----NVIEDLINNY 1223
Cdd:smart00324  161 rhqnTVIEFLIENA 174
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
616-731 1.06e-43

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 154.69  E-value: 1.06e-43
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   616 EVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDasIWSNELIELFIVIGNKRAND 695
Cdd:pfam01412    2 RVLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVHISKVRSLTLD--TWTDEQLELMKAGGNDRANE 79
                           90       100       110
                   ....*....|....*....|....*....|....*.
gi 152012529   696 FWAGNLQKDEELHMDSPVEKRKNFITQKYKEGKFRK 731
Cdd:pfam01412   80 FWEANLPPSYKPPPSSDREKRESFIRAKYVEKKFAK 115
ArfGap cd08204
GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family ...
619-724 2.28e-39

GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide-binding protein Arf, a member of the Ras superfamily of GTPases. Like all GTP-binding proteins, Arf proteins function as molecular switches, cycling between GTP (active-membrane bound) and GDP (inactive-cytosolic) form. Conversion to the GTP-bound form requires a guanine nucleotide exchange factor (GEF), whereas conversion to the GDP-bound form is catalyzed by a GTPase activating protein (GAP). In that sense, ArfGAPs were originally proposed to function as terminators of Arf signaling, which is mediated by regulating Arf family GTP-binding proteins. However, recent studies suggest that ArfGAPs can also function as Arf effectors, independently of their GAP enzymatic activity to transduce signals in cells. The ArfGAP domain contains a C4-type zinc finger motif and a conserved arginine that is required for activity, within a specific spacing (CX2CX16CX2CX4R). ArfGAPs, which have multiple functional domains, regulate the membrane trafficking and actin cytoskeleton remodeling via specific interactions with signaling lipids such as phosphoinositides and trafficking proteins, which consequently affect cellular events such as cell growth, migration, and cancer invasion. The ArfGAP family, which includes 31 human ArfGAP-domain containing proteins, is divided into 10 subfamilies based on domain structure and sequence similarity. The ArfGAP nomenclature is mainly based on the protein domain structure. For example, ASAP1 contains ArfGAP, SH3, ANK repeat and PH domains; ARAPs contain ArfGAP, Rho GAP, ANK repeat and PH domains; ACAPs contain ArfGAP, BAR (coiled coil), ANK repeat and PH domains; and AGAPs contain Arf GAP, GTP-binding protein-like, ANK repeat and PH domains. Furthermore, the ArfGAPs can be classified into two major types of subfamilies, according to the overall domain structure: the ArfGAP1 type includes 6 subfamilies (ArfGAP1, ArfGAP2/3, ADAP, SMAP, AGFG, and GIT), which contain the ArfGAP domain at the N-terminus of the protein; and the AZAP type includes 4 subfamilies (ASAP, ACAP, AGAP, and ARAP), which contain an ArfGAP domain between the PH and ANK repeat domains.


Pssm-ID: 350058 [Multi-domain]  Cd Length: 106  Bit Score: 141.87  E-value: 2.28e-39
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  619 EKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWA 698
Cdd:cd08204     2 EELLKLPGNKVCADCGAPDPRWASINLGVFICIRCSGIHRSLGVHISKVRSLTLDS--WTPEQVELMKAIGNARANAYYE 79
                          90       100
                  ....*....|....*....|....*..
gi 152012529  699 GNLQKDEEL-HMDSPVEKRKNFITQKY 724
Cdd:cd08204    80 ANLPPGFKKpTPDSSDEEREQFIRAKY 106
RA_ARAP3 cd17228
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
1255-1352 9.67e-39

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 (ARAP3); ARAP3, also termed Centaurin-delta-3 (Cnt-d3), is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members, ADP-ribosylation factor 6 (Arf6) and Ras homolog gene family member A (RhoA). It is regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP, and has been implicated in the regulation of cell shape and adhesion. ARAP3 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340748  Cd Length: 99  Bit Score: 140.01  E-value: 9.67e-39
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1255 AGDLLIEVYVERKEPDCSIIIRISPVMEAEELTNDILAIKNIIPTKGDIWATFEVIENEELERPLHYKENVLEQVLRWSS 1334
Cdd:cd17228     1 AGDLIIEVYLEQKLPDCCVTLKVSPTMTAEELTNQVLDMRNIAAASKDVWLTFEVIENGELERPLHPKEKVLEQALQWCK 80
                          90
                  ....*....|....*...
gi 152012529 1335 LAEPGSAYLVVKRFLTAD 1352
Cdd:cd17228    81 LPEPSSAYLLVKKVPIGE 98
RhoGAP cd00159
RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like ...
1059-1222 7.20e-35

RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins.


Pssm-ID: 238090 [Multi-domain]  Cd Length: 169  Bit Score: 131.66  E-value: 7.20e-35
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1059 PIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRagKHQLEDVTAVLKSFLSDIDDALLTKELYPY 1138
Cdd:cd00159     1 PLIIEKCIEYLEKNGLNTEGIFRVSGSASKIEELKKKFDRGEDIDDLE--DYDVHDVASLLKLYLRELPEPLIPFELYDE 78
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1139 WISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLF-------QTKGQTSE 1211
Cdd:cd00159    79 FIELAKIEDEEERIEALKELLKSLPPENRDLLKYLLKLLHKISQNSEVNKMTASNLAIVFAPTLLrppdsddELLEDIKK 158
                         170
                  ....*....|.
gi 152012529 1212 EVNVIEDLINN 1222
Cdd:cd00159   159 LNEIVEFLIEN 169
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
624-729 3.34e-32

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 122.06  E-value: 3.34e-32
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529    624 NESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAGNLQK 703
Cdd:smart00105    7 IPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLGVHISKVRSLTLDT--WTEEELRLLQKGGNENANSIWESNLDD 84
                            90       100
                    ....*....|....*....|....*..
gi 152012529    704 DEELHMDSPV-EKRKNFITQKYKEGKF 729
Cdd:smart00105   85 FSLKPPDDDDqQKYESFIAAKYEEKLF 111
RhoGAP_fRGD1 cd04398
RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1045-1227 7.86e-32

RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD1-like proteins. Yeast Rgd1 is a GAP protein for Rho3 and Rho4 and plays a role in low-pH response. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239863  Cd Length: 192  Bit Score: 123.67  E-value: 7.86e-32
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1045 GNALQDQQLSKND-VPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRAGKHQLEDVTAV---LK 1120
Cdd:cd04398     2 GVPLEDLILREGDnVPNIVYQCIQAIENFGLNLEGIYRLSGNVSRVNKLKELFDKDPLNVLLISPEDYESDIHSVaslLK 81
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1121 SFLSDIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSS 1200
Cdd:cd04398    82 LFFRELPEPLLTKALSREFIEAAKIEDESRRRDALHGLINDLPDANYATLRALMFHLARIKEHESVNRMSVNNLAIIWGP 161
                         170       180       190
                  ....*....|....*....|....*....|.
gi 152012529 1201 CLFQTKGQTSEEVN----VIEDLINNYVEIF 1227
Cdd:cd04398   162 TLMNAAPDNAADMSfqsrVIETLLDNAYQIF 192
RA_ARAPs cd17113
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
1255-1352 6.08e-29

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing proteins ARAP1, ARAP2, ARAP3, and similar proteins; ARAPs are phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating proteins (GAPs). They contain multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340633  Cd Length: 95  Bit Score: 111.57  E-value: 6.08e-29
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1255 AGDLLIEVYVERKEpDCSIIIRISPVMEAEELTNDILAIKNIIPTKGDiWATFEVIENEELERPLHYKENVLEQVLRWSS 1334
Cdd:cd17113     1 SGDFLIPVYIEEKE-GTSVNIKVTPTMTAEEVVEQALNKKNLGGPEGN-WALFEVIEDGGLERPLHESEKVLDVVLRWSQ 78
                          90
                  ....*....|....*...
gi 152012529 1335 LaEPGSAYLVVKRFLTAD 1352
Cdd:cd17113    79 W-PRKSNYLCVKKNPLLE 95
ArfGap_ACAP cd08835
ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP ...
627-729 1.26e-28

ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP domain is an essential part of ACAP proteins that play important role in endocytosis, actin remodeling and receptor tyrosine kinase-dependent cell movement. ACAP subfamily of ArfGAPs are composed of coiled coils (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. In addition, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350064 [Multi-domain]  Cd Length: 116  Bit Score: 111.58  E-value: 1.26e-28
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAGNLQKD-- 704
Cdd:cd08835    13 NAQCCDCGSPDPRWASINLGVTLCIECSGIHRSLGVHVSKVRSLTLDS--WEPELLKVMLELGNDVVNRIYEANVPDDgs 90
                          90       100
                  ....*....|....*....|....*
gi 152012529  705 EELHMDSPVEKRKNFITQKYKEGKF 729
Cdd:cd08835    91 VKPTPDSSRQEREAWIRAKYVEKKF 115
ArfGap_AGAP cd08836
ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation ...
627-724 2.25e-28

ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350065 [Multi-domain]  Cd Length: 108  Bit Score: 110.46  E-value: 2.25e-28
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAGNLQKDEE 706
Cdd:cd08836    12 NDHCVDCGAPNPDWASLNLGALMCIECSGIHRNLGTHISRVRSLDLDD--WPVELLKVMSAIGNDLANSVWEGNTQGRTK 89
                          90
                  ....*....|....*...
gi 152012529  707 LHMDSPVEKRKNFITQKY 724
Cdd:cd08836    90 PTPDSSREEKERWIRAKY 107
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
624-731 1.27e-26

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 112.56  E-value: 1.27e-26
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  624 NESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDasIWSNELIELFIVIGNKRANDFWAGNLQK 703
Cdd:COG5347    17 DSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLGVHISKVKSLTLD--NWTEEELRRMEVGGNSNANRFYEKNLLD 94
                          90       100       110
                  ....*....|....*....|....*....|..
gi 152012529  704 DEELHM----DSPVekRKNFITQKYKEGKFRK 731
Cdd:COG5347    95 QLLLPIkakyDSSV--AKKYIRKKYELKKFID 124
ArfGap_GIT cd08833
The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein ...
626-724 7.64e-26

The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350062 [Multi-domain]  Cd Length: 109  Bit Score: 103.54  E-value: 7.64e-26
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  626 SNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDasIWSNELIELFIVIGNKRANDFWAGNL---- 701
Cdd:cd08833     7 NARVCADCSAPDPEWASINRGVLICDECCSIHRSLGRHISQVKSLRKD--QWPPSLLEMVQTLGNNGANSIWEHSLldps 84
                          90       100
                  ....*....|....*....|....*
gi 152012529  702 --QKDEELHMDSPVEKRKNFITQKY 724
Cdd:cd08833    85 qsGKRKPIPPDPVHPTKEEFIKAKY 109
ArfGap_ADAP cd08832
ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) ...
625-697 2.68e-24

ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350061 [Multi-domain]  Cd Length: 113  Bit Score: 99.26  E-value: 2.68e-24
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 152012529  625 ESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFW 697
Cdd:cd08832    15 PGNNTCADCGAPDPEWASYNLGVFICLDCSGIHRSLGTHISKVKSLRLDN--WDDSQVEFMEENGNEKAKAKY 85
ArfGap_SMAP cd08839
Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of ...
625-724 9.70e-24

Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350068 [Multi-domain]  Cd Length: 103  Bit Score: 97.34  E-value: 9.70e-24
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  625 ESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAGNLQKD 704
Cdd:cd08839     8 EDNKYCADCGAKGPRWASWNLGVFICIRCAGIHRNLGVHISKVKSVNLDS--WTPEQVQSMQEMGNARANAYYEANLPDG 85
                          90       100
                  ....*....|....*....|.
gi 152012529  705 -EELHMDSPVEkrkNFITQKY 724
Cdd:cd08839    86 fRRPQTDSALE---NFIRDKY 103
RhoGAP_ARHGAP21 cd04395
RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1048-1227 1.06e-23

RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP21-like proteins. ArhGAP21 is a multi-domain protein, containing RhoGAP, PH and PDZ domains, and is believed to play a role in the organization of the cell-cell junction complex. It has been shown to function as a GAP of Cdc42 and RhoA, and to interact with alpha-catenin and Arf6. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239860  Cd Length: 196  Bit Score: 100.55  E-value: 1.06e-23
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1048 LQDQQLSKND--VPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRAGKHQ-LEDVTAVLKSFLS 1124
Cdd:cd04395     6 LDDCPPSSENpyVPLIVEVCCNIVEARGLETVGIYRVPGNNAAISALQEELNRGGFDIDLQDPRWRdVNVVSSLLKSFFR 85
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1125 DIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQ 1204
Cdd:cd04395    86 KLPEPLFTNELYPDFIEANRIEDPVERLKELRRLIHSLPDHHYETLKHLIRHLKTVADNSEVNKMEPRNLAIVFGPTLVR 165
                         170       180       190
                  ....*....|....*....|....*....|.
gi 152012529 1205 TKGQT--------SEEVNVIEDLINNYVEIF 1227
Cdd:cd04395   166 TSDDNmetmvthmPDQCKIVETLIQHYDWFF 196
ArfGap_ASAP cd08834
ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation ...
627-729 1.08e-23

ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation factor GTPase-activating proteins; The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. Both ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350063 [Multi-domain]  Cd Length: 117  Bit Score: 97.68  E-value: 1.08e-23
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDasIWSNELIELFIVIGNKRANDFWAGNLQKDEE 706
Cdd:cd08834    15 NDVCCDCGSPDPTWLSTNLGILTCIECSGVHRELGVHVSRIQSLTLD--NLGTSELLLARNLGNEGFNEIMEANLPPGYK 92
                          90       100
                  ....*....|....*....|...
gi 152012529  707 LHMDSPVEKRKNFITQKYKEGKF 729
Cdd:cd08834    93 PTPNSDMEERKDFIRAKYVEKKF 115
ArfGap_AGAP2 cd08853
ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation ...
627-725 2.08e-23

ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350078 [Multi-domain]  Cd Length: 109  Bit Score: 96.62  E-value: 2.08e-23
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAGNLQKDEE 706
Cdd:cd08853    13 NSHCVDCETQNPKWASLNLGVLMCIECSGIHRNLGTHLSRVRSLDLDD--WPVELRKVMSSIGNELANSIWEGSSQGQTK 90
                          90
                  ....*....|....*....
gi 152012529  707 LHMDSPVEKRKNFITQKYK 725
Cdd:cd08853    91 PSSDSTREEKERWIRAKYE 109
ArfGap_AGAP1 cd08854
ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation ...
627-725 2.50e-23

ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350079 [Multi-domain]  Cd Length: 109  Bit Score: 96.23  E-value: 2.50e-23
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDasIWSNELIELFIVIGNKRANDFWAGNLQKDEE 706
Cdd:cd08854    13 NSLCVDCGAPNPTWASLNLGALICIECSGIHRNLGTHLSRVRSLDLD--DWPRELTLVLTAIGNHMANSIWESCTQGRTK 90
                          90
                  ....*....|....*....
gi 152012529  707 LHMDSPVEKRKNFITQKYK 725
Cdd:cd08854    91 PAPDSSREERESWIRAKYE 109
ArfGap_AGAP3 cd08855
ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation ...
627-725 3.19e-23

ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion.


Pssm-ID: 350080 [Multi-domain]  Cd Length: 110  Bit Score: 95.89  E-value: 3.19e-23
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAGNLQKDEE 706
Cdd:cd08855    14 NSFCIDCDAPNPDWASLNLGALMCIECSGIHRNLGTHLSRVRSLDLDD--WPVELSMVMTAIGNAMANSVWEGALDGYSK 91
                          90
                  ....*....|....*....
gi 152012529  707 LHMDSPVEKRKNFITQKYK 725
Cdd:cd08855    92 PGPDSTREEKERWIRAKYE 110
ArfGap_ArfGap1 cd08830
Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
625-725 7.92e-23

Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350059 [Multi-domain]  Cd Length: 115  Bit Score: 94.87  E-value: 7.92e-23
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  625 ESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAGNlqkd 704
Cdd:cd08830    12 PGNNRCFDCGAPNPQWASVSYGIFICLECSGVHRGLGVHISFVRSITMDS--WSEKQLKKMELGGNAKLREFFESY---- 85
                          90       100
                  ....*....|....*....|.
gi 152012529  705 eELHMDSPvekrknfITQKYK 725
Cdd:cd08830    86 -GISPDLP-------IREKYN 98
ArfGap_ACAP1 cd08852
ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs ...
616-729 3.04e-22

ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350077 [Multi-domain]  Cd Length: 120  Bit Score: 93.49  E-value: 3.04e-22
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  616 EVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRAND 695
Cdd:cd08852     2 HAVAQVQSVDGNAQCCDCREPAPEWASINLGVTLCIQCSGIHRSLGVHFSKVRSLTLDS--WEPELVKLMCELGNVIINQ 79
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 152012529  696 FWAGNLQKD--EELHMDSPVEKRKNFITQKYKEGKF 729
Cdd:cd08852    80 IYEARIEAMaiKKPGPSSSRQEKEAWIRAKYVEKKF 115
RhoGAP_myosin_IX cd04377
RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
1055-1205 1.29e-21

RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in class IX myosins. Class IX myosins contain a characteristic head domain, a neck domain, a tail domain which contains a C6H2-zinc binding motif and a RhoGAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239842  Cd Length: 186  Bit Score: 94.04  E-value: 1.29e-21
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1055 KNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRagKHQLEDVTAVLKSFLSDIDDALLTKE 1134
Cdd:cd04377    12 DRSVPLVLEKLLEHIEMHGLYTEGIYRKSGSANKIKELRQGLDTDPDSVNLE--DYPIHVITSVLKQWLRELPEPLMTFE 89
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 152012529 1135 LYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQT 1205
Cdd:cd04377    90 LYENFLRAMELEEKQERVRALYSVLEQLPRANLNTLERLIFHLVRVALQEEVNRMSANALAIVFAPCILRC 160
ArfGap_ACAP2 cd08851
ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs ...
627-729 1.73e-20

ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350076 [Multi-domain]  Cd Length: 116  Bit Score: 88.50  E-value: 1.73e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDasIWSNELIELFIVIGNKRANDFWAGNLQK--D 704
Cdd:cd08851    13 NASCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLD--TWEPELLKLMCELGNDVINRIYEARVEKmgA 90
                          90       100
                  ....*....|....*....|....*
gi 152012529  705 EELHMDSPVEKRKNFITQKYKEGKF 729
Cdd:cd08851    91 KKPQPGGQRQEKEAYIRAKYVERKF 115
ArfGap_ACAP3 cd08850
ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs ...
627-729 2.04e-20

ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. It has been shown that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) also have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages.


Pssm-ID: 350075 [Multi-domain]  Cd Length: 116  Bit Score: 88.08  E-value: 2.04e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAGnlqKDEE 706
Cdd:cd08850    13 NDQCCDCGQPDPRWASINLGILLCIECSGIHRSLGVHCSKVRSLTLDS--WEPELLKLMCELGNSTVNQIYEA---QCEE 87
                          90       100
                  ....*....|....*....|....*...
gi 152012529  707 LHMDSPV-----EKRKNFITQKYKEGKF 729
Cdd:cd08850    88 LGLKKPTasssrQDKEAWIKAKYVEKKF 115
RhoGAP_p190 cd04373
RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1045-1203 1.57e-19

RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p190-like proteins. p190, also named RhoGAP5, plays a role in neuritogenesis and axon branch stability. p190 shows a preference for Rho, over Rac and Cdc42, and consists of an N-terminal GTPase domain and a C-terminal GAP domain. The central portion of p190 contains important regulatory phosphorylation sites. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239838  Cd Length: 185  Bit Score: 87.90  E-value: 1.57e-19
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1045 GNALQDQQLSKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDaRSFKLRAGKHQLEDVTAVLKSFLS 1124
Cdd:cd04373     2 GVPLANVVTSEKPIPIFLEKCVEFIEATGLETEGIYRVSGNKTHLDSLQKQFDQD-HNLDLVSKDFTVNAVAGALKSFFS 80
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 152012529 1125 DIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLF 1203
Cdd:cd04373    81 ELPDPLIPYSMHLELVEAAKINDREQRLHALKELLKKFPPENFDVFKYVITHLNKVSQNSKVNLMTSENLSICFWPTLM 159
RA_ARAP1 cd17226
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
1255-1347 5.91e-19

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 (ARAP1); ARAP1, also termed Centaurin-delta-2 (Cnt-d2), is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) that inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome. It associates with the Cbl-interacting protein of 85 kDa (CIN85), regulates endocytic trafficking of the EGFR, and thus affects ubiquitination of EGFR. It also regulates the ring size of circular dorsal ruffles through Arf1 and Arf5. ARAP1 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340746  Cd Length: 93  Bit Score: 83.36  E-value: 5.91e-19
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1255 AGDLLIEVYVERKEPDCSIIIRISPVMEAEELTNDILAIKNIIPTKGDIWATFEVIENEELERPLHYKENVLEQvlrWSS 1334
Cdd:cd17226     1 SPDFICTVYLEEKKEGSEQHVQVPASMTAEELTFEILDRRNIHTREKDYWSCFEVNEREEAERPLHFSEKVLPI---FHS 77
                          90
                  ....*....|...
gi 152012529 1335 LAEpgSAYLVVKR 1347
Cdd:cd17226    78 LGS--DSHLVVKK 88
RhoGAP_chimaerin cd04372
RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1059-1227 2.54e-18

RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of chimaerins. Chimaerins are a family of phorbolester- and diacylglycerol-responsive GAPs specific for the Rho-like GTPase Rac. Chimaerins exist in two alternative splice forms that each contain a C-terminal GAP domain, and a central C1 domain which binds phorbol esters, inducing a conformational change that activates the protein; one splice form is lacking the N-terminal Src homology-2 (SH2) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239837 [Multi-domain]  Cd Length: 194  Bit Score: 84.88  E-value: 2.54e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1059 PIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRAGKH-QLEDVTAVLKSFLSDIDDALLTKELYP 1137
Cdd:cd04372    17 PMVVDMCIREIEARGLQSEGLYRVSGFAEEIEDVKMAFDRDGEKADISATVYpDINVITGALKLYFRDLPIPVITYDTYP 96
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1138 YWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQTKGQTS------- 1210
Cdd:cd04372    97 KFIDAAKISNPDERLEAVHEALMLLPPAHYETLRYLMEHLKRVTLHEKDNKMNAENLGIVFGPTLMRPPEDSAlttlndm 176
                         170
                  ....*....|....*...
gi 152012529 1211 -EEVNVIEDLINNYVEIF 1227
Cdd:cd04372   177 rYQILIVQLLITNEDVLF 194
ArfGap_ArfGap2_3_like cd08831
Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
627-726 4.29e-18

Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350060 [Multi-domain]  Cd Length: 116  Bit Score: 81.44  E-value: 4.29e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWagnlQKDEE 706
Cdd:cd08831    15 NKVCFDCGAKNPTWASVTFGVFLCLDCSGVHRSLGVHISFVRSTNLDS--WTPEQLRRMKVGGNAKAREFF----KQHGG 88
                          90       100
                  ....*....|....*....|
gi 152012529  707 LHMDSPVEKRKNFITQKYKE 726
Cdd:cd08831    89 LLSGDIKQKYTSRAAQKYKE 108
ArfGap_ArfGap1_like cd08959
ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
627-726 4.35e-18

ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350084 [Multi-domain]  Cd Length: 115  Bit Score: 81.41  E-value: 4.35e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAgnlQKDEE 706
Cdd:cd08959    14 NKVCFDCGAKNPQWASVTYGIFICLDCSGVHRGLGVHISFVRSTTMDK--WTEEQLRKMKVGGNANAREFFK---QHGIY 88
                          90       100
                  ....*....|....*....|
gi 152012529  707 LHMDsPVEKRKNFITQKYKE 726
Cdd:cd08959    89 DSMD-IKEKYNSRAAALYRD 107
ArfGap_SMAP2 cd08859
Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of ...
625-728 1.04e-17

Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350083 [Multi-domain]  Cd Length: 107  Bit Score: 80.03  E-value: 1.04e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  625 ESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAGNLQKD 704
Cdd:cd08859     8 EENKFCADCQSKGPRWASWNIGVFICIRCAGIHRNLGVHISRVKSVNLDQ--WTQEQIQCMQEMGNGKANRLYEAFLPEN 85
                          90       100
                  ....*....|....*....|....*
gi 152012529  705 -EELHMDSPVEkrkNFITQKYKEGK 728
Cdd:cd08859    86 fRRPQTDQAVE---GFIRDKYEKKK 107
RhoGAP_ARHGAP27_15_12_9 cd04403
RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ...
1052-1210 1.18e-17

RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP27 (also called CAMGAP1), ARHGAP15, 12 and 9-like proteins; This subgroup of ARHGAPs are multidomain proteins that contain RhoGAP, PH, SH3 and WW domains. Most members that are studied show GAP activity towards Rac1, some additionally show activity towards Cdc42. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239868 [Multi-domain]  Cd Length: 187  Bit Score: 82.82  E-value: 1.18e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1052 QLSKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELleSFKKDaRSFKLRAGKHQLED---VTAVLKSFLSDIDD 1128
Cdd:cd04403    10 QRENSTVPKFVRLCIEAVEKRGLDVDGIYRVSGNLAVIQKL--RFAVD-HDEKLDLDDSKWEDihvITGALKLFFRELPE 86
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1129 ALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQTKGQ 1208
Cdd:cd04403    87 PLFPYSLFNDFVAAIKLSDYEQRVSAVKDLIKSLPKPNHDTLKMLFRHLCRVIEHGEKNRMTTQNLAIVFGPTLLRPEQE 166

                  ..
gi 152012529 1209 TS 1210
Cdd:cd04403   167 TG 168
RhoGAP_myosin_IXB cd04407
RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
1055-1204 2.63e-17

RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXB. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239872 [Multi-domain]  Cd Length: 186  Bit Score: 81.58  E-value: 2.63e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1055 KNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRagKHQLEDVTAVLKSFLSDIDDALLTKE 1134
Cdd:cd04407    12 KTSVPIVLEKLLEHVEMHGLYTEGIYRKSGSANRMKELHQLLQADPENVKLE--NYPIHAITGLLKQWLRELPEPLMTFA 89
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1135 LYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQ 1204
Cdd:cd04407    90 QYNDFLRAVELPEKQEQLQAIYRVLEQLPTANHNTLERLIFHLVKVALEEDVNRMSPNALAIVFAPCLLR 159
ArfGap_ASAP1 cd08848
ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); ...
627-732 2.85e-17

ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350073 [Multi-domain]  Cd Length: 122  Bit Score: 79.31  E-value: 2.85e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDaSIWSNELIeLFIVIGNKRANDFWAGNL-QKDE 705
Cdd:cd08848    15 NEVCCDCGSPDPTWLSTNLGILTCIECSGIHREMGVHISRIQSLELD-KLGTSELL-LAKNVGNNSFNDIMEGNLpSPSP 92
                          90       100
                  ....*....|....*....|....*...
gi 152012529  706 ELHMDSPVEKRKNFITQKYKEGKF-RKT 732
Cdd:cd08848    93 KPSPSSDMTARKEYITAKYVEHRFsRKT 120
ArfGap_ASAP3 cd17900
ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ...
627-729 4.38e-17

ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP1 and ASAP2, ASAP3 do not have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350087 [Multi-domain]  Cd Length: 124  Bit Score: 79.12  E-value: 4.38e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsIWSNELIeLFIVIGNKRANDFWAGNL--QKD 704
Cdd:cd17900    15 NSQCCDCGAPDPTWLSTNLGILTCIECSGIHRELGVRYSRIQSLTLDL-LSTSELL-LAVSMGNTRFNEVMEATLpaHGG 92
                          90       100
                  ....*....|....*....|....*
gi 152012529  705 EELHMDSPVEKRKNFITQKYKEGKF 729
Cdd:cd17900    93 PKPSAESDMGTRKDYIMAKYVEHRF 117
RhoGAP_ARHGAP20 cd04402
RhoGAP_ARHGAP20: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1115-1227 1.41e-16

RhoGAP_ARHGAP20: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP20-like proteins. ArhGAP20, also known as KIAA1391 and RA-RhoGAP, contains a RhoGAP, a RA, and a PH domain, and ANXL repeats. ArhGAP20 is activated by Rap1 and induces inactivation of Rho, which in turn leads to neurite outgrowth. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239867  Cd Length: 192  Bit Score: 79.65  E-value: 1.41e-16
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1115 VTAVLKSFLSDIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNL 1194
Cdd:cd04402    69 LASVLKDFLRNIPGSLLSSDLYEEWMSALDQENEEEKIAELQRLLDKLPRPNVLLLKHLICVLHNISQNSETNKMDAFNL 148
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|
gi 152012529 1195 ALVFSSCLFQTKGQTSEEVNV-------IEDLINNYVEIF 1227
Cdd:cd04402   149 AVCIAPSLLWPPASSELQNEDlkkvtslVQFLIENCQEIF 188
RhoGAP_myosin_IXA cd04406
RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
1058-1219 1.42e-16

RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXA. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239871  Cd Length: 186  Bit Score: 79.66  E-value: 1.42e-16
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1058 VPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLraGKHQLEDVTAVLKSFLSDIDDALLTKELYP 1137
Cdd:cd04406    15 VPLVVEKLINYIEMHGLYTEGIYRKSGSTNKIKELRQGLDTDANSVNL--DDYNIHVIASVFKQWLRDLPNPLMTFELYE 92
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1138 YWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQTKgQTSEEVNVIE 1217
Cdd:cd04406    93 EFLRAMGLQERRETVRGVYSVIDQLSRTHLNTLERLIFHLVRIALQEETNRMSANALAIVFAPCILRCP-DTTDPLQSVQ 171

                  ..
gi 152012529 1218 DL 1219
Cdd:cd04406   172 DI 173
RhoGAP_GMIP_PARG1 cd04378
RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
1058-1222 1.42e-16

RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein) and PARG1 (PTPL1-associated RhoGAP1). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239843  Cd Length: 203  Bit Score: 80.16  E-value: 1.42e-16
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1058 VPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKdarsfklraGKHQLE-------DVTAVLKSFLSDIDDAL 1130
Cdd:cd04378    16 VPFIIKKCTSEIENRALGVQGIYRVSGSKARVEKLCQAFEN---------GKDLVElselsphDISSVLKLFLRQLPEPL 86
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1131 LTKELYPYWIS-ALDTQDDKERIKKYGA-------------FIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLAL 1196
Cdd:cd04378    87 ILFRLYNDFIAlAKEIQRDTEEDKAPNTpievnriirklkdLLRQLPASNYNTLQHLIAHLYRVAEQFEENKMSPNNLGI 166
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|.
gi 152012529 1197 VFS---------------SCLFQTKGQTseevNVIEDLINN 1222
Cdd:cd04378   167 VFGptlirprpgdadvslSSLVDYGYQA----RLVEFLITN 203
RhoGAP-p50rhoGAP cd04404
RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1048-1227 1.97e-16

RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p50RhoGAP-like proteins; p50RhoGAP, also known as RhoGAP-1, contains a C-terminal RhoGAP domain and an N-terminal Sec14 domain which binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). It is ubiquitously expressed and preferentially active on Cdc42. This subgroup also contains closely related ARHGAP8. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239869 [Multi-domain]  Cd Length: 195  Bit Score: 79.30  E-value: 1.97e-16
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1048 LQDQQLSKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKK-DARSFKlragkhQLEDV---TAVLKSFL 1123
Cdd:cd04404    13 LKEKNPEQEPIPPVVRETVEYLQAHALTTEGIFRRSANTQVVKEVQQKYNMgEPVDFD------QYEDVhlpAVILKTFL 86
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1124 SDIDDALLTKELYPYwISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLF 1203
Cdd:cd04404    87 RELPEPLLTFDLYDD-IVGFLNVDKEERVERVKQLLQTLPEENYQVLKYLIKFLVQVSAHSDQNKMTNSNLAVVFGPNLL 165
                         170       180       190
                  ....*....|....*....|....*....|
gi 152012529 1204 QTKGQ--TSEEVNVI----EDLINNYVEIF 1227
Cdd:cd04404   166 WAKDAsmSLSAINPIntftKFLLDHQDEIF 195
RhoGAP_CdGAP cd04384
RhoGAP_CdGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1054-1206 2.87e-16

RhoGAP_CdGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of CdGAP-like proteins; CdGAP contains an N-terminal RhoGAP domain and a C-terminal proline-rich region, and it is active on both Cdc42 and Rac1 but not RhoA. CdGAP is recruited to focal adhesions via the interaction with the scaffold protein actopaxin (alpha-parvin). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239849 [Multi-domain]  Cd Length: 195  Bit Score: 79.08  E-value: 2.87e-16
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1054 SKNDVPIIVNSCIAFVTQYGLgCKYIYQKNGDPLHISELLESFKKDAR-SFKLRAGKHQLEDVTAVLKSFLSDIDDALLT 1132
Cdd:cd04384    14 SGQDVPQVLKSCTEFIEKHGI-VDGIYRLSGIASNIQRLRHEFDSEQIpDLTKDVYIQDIHSVSSLCKLYFRELPNPLLT 92
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 152012529 1133 KELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQTK 1206
Cdd:cd04384    93 YQLYEKFSEAVSAASDEERLEKIHDVIQQLPPPHYRTLEFLMRHLSRLAKYCSITNMHAKNLAIVWAPNLLRSK 166
ArfGap_ADAP2 cd08844
ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
626-695 6.57e-16

ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350070 [Multi-domain]  Cd Length: 112  Bit Score: 75.19  E-value: 6.57e-16
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  626 SNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLgPKDSKVRSLKMDasIWSNELIELFIVIGNKRAND 695
Cdd:cd08844    16 GNSVCADCGAPDPDWASYTLGIFICLNCSGVHRNL-PDISRVKSIRLD--FWEDELVEFMKENGNLKAKA 82
ArfGap_ADAP1 cd08843
ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
627-693 7.54e-16

ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350069 [Multi-domain]  Cd Length: 112  Bit Score: 75.04  E-value: 7.54e-16
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLgPKDSKVRSLKMDAsiWSNELIELFIVIGNKRA 693
Cdd:cd08843    17 NARCADCGAPDPDWASYTLGVFICLSCSGIHRNI-PQVSKVKSVRLDA--WEEAQVEFMASHGNDAA 80
ArfGap_ASAP2 cd08849
ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2) ...
627-731 1.01e-15

ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2); The Arf GAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf , thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport.


Pssm-ID: 350074 [Multi-domain]  Cd Length: 123  Bit Score: 75.01  E-value: 1.01e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsIWSNELIeLFIVIGNKRANDFWAGNLQKDEE 706
Cdd:cd08849    15 NDVCCDCGAPDPTWLSTNLGILTCIECSGIHRELGVHYSRMQSLTLDV-LGTSELL-LAKNIGNAGFNEIMEACLPAEDV 92
                          90       100
                  ....*....|....*....|....*..
gi 152012529  707 LHMD--SPVEKRKNFITQKYKEGKFRK 731
Cdd:cd08849    93 VKPNpgSDMNARKDYITAKYIERRYAR 119
RhoGAP_nadrin cd04386
RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1045-1227 1.09e-15

RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Nadrin-like proteins. Nadrin, also named Rich-1, has been shown to be involved in the regulation of Ca2+-dependent exocytosis in neurons and recently has been implicated in tight junction maintenance in mammalian epithelium. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239851  Cd Length: 203  Bit Score: 77.50  E-value: 1.09e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1045 GNALQDQ-QLSKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFkkDARSFKLRAgKHQLED---VTAVLK 1120
Cdd:cd04386     6 GTPLEEHlKRTGREIALPIEACVMCLLETGMNEEGLFRVGGGASKLKRLKAAL--DAGTFSLPL-DEFYSDphaVASALK 82
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1121 SFLSDIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSS 1200
Cdd:cd04386    83 SYLRELPDPLLTYNLYEDWVQAANKPDEDERLQAIWRILNKLPRENRDNLRYLIKFLSKLAQKSDENKMSPSNIAIVLAP 162
                         170       180       190
                  ....*....|....*....|....*....|....*..
gi 152012529 1201 CLFQTK----------GQTSEEVNVIEDLINNYVEIF 1227
Cdd:cd04386   163 NLLWAKnegslaemaaGTSVHVVAIVELIISHADWFF 199
RhoGAP_GMIP cd04408
RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP ...
1057-1222 1.79e-15

RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239873  Cd Length: 200  Bit Score: 76.78  E-value: 1.79e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1057 DVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLraGKHQLEDVTAVLKSFLSDIDDALLTKELY 1136
Cdd:cd04408    15 EVPFVVVRCTAEIENRALGVQGIYRISGSKARVEKLCQAFENGRDLVDL--SGHSPHDITSVLKHFLKELPEPVLPFQLY 92
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1137 PYWIS-ALDTQDDKERIKKYGAF----IRS-------LPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFS----- 1199
Cdd:cd04408    93 DDFIAlAKELQRDSEKAAESPSIveniIRSlkellgrLPVSNYNTLRHLMAHLYRVAERFEDNKMSPNNLGIVFGptllr 172
                         170       180       190
                  ....*....|....*....|....*....|..
gi 152012529 1200 ---------SCLFQTKGQTseevNVIEDLINN 1222
Cdd:cd04408   173 plvggdvsmICLLDTGYQA----QLVEFLISN 200
ArfGap_GIT2 cd08847
GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
626-724 1.97e-15

GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350072 [Multi-domain]  Cd Length: 111  Bit Score: 73.90  E-value: 1.97e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  626 SNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIVIGNKRANDFWAGNL---- 701
Cdd:cd08847     7 SSEVCADCSTSDPRWASVNRGVLICDECCSVHRSLGRHISQVRHLKHTS--WPPTLLQMVQTLYNNGANSIWEHSLldpa 84
                          90       100
                  ....*....|....*....|....*..
gi 152012529  702 ----QKDEELHMDSPVEKRKNFITQKY 724
Cdd:cd08847    85 simsGKRKANPQDKVHPNKAEFIRAKY 111
RhoGAP_Bcr cd04387
RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr ...
1058-1204 2.44e-15

RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr (breakpoint cluster region protein)-like proteins. Bcr is a multidomain protein with a variety of enzymatic functions. It contains a RhoGAP and a Rho GEF domain, a Ser/Thr kinase domain, an N-terminal oligomerization domain, and a C-terminal PDZ binding domain, in addition to PH and C2 domains. Bcr is a negative regulator of: i) RacGTPase, via the Rho GAP domain, ii) the Ras-Raf-MEK-ERK pathway, via phosphorylation of the Ras binding protein AF-6, and iii) the Wnt signaling pathway through binding beta-catenin. Bcr can form a complex with beta-catenin and Tcf1. The Wnt signaling pathway is involved in cell proliferation, differentiation, and cell renewal. Bcr was discovered as a fusion partner of Abl. The Bcr-Abl fusion is characteristic for a large majority of chronic myelogenous leukemias (CML). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239852 [Multi-domain]  Cd Length: 196  Bit Score: 76.12  E-value: 2.44e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1058 VPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRAGKHQLEDVTAVLKSFLSDIDDALLTKELYP 1137
Cdd:cd04387    16 VPYIVRQCVEEVERRGMEEVGIYRISGVATDIQALKAAFDTNNKDVSVMLSEMDVNAIAGTLKLYFRELPEPLFTDELYP 95
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 152012529 1138 YWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQ 1204
Cdd:cd04387    96 NFAEGIALSDPVAKESCMLNLLLSLPDPNLVTFLFLLHHLKRVAEREEVNKMSLHNLATVFGPTLLR 162
RhoGAP_MgcRacGAP cd04382
RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
1058-1229 3.81e-15

RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in MgcRacGAP proteins. MgcRacGAP plays an important dual role in cytokinesis: i) it is part of centralspindlin-complex, together with the mitotic kinesin MKLP1, which is critical for the structure of the central spindle by promoting microtuble bundling. ii) after phosphorylation by aurora B MgcRacGAP becomes an effective regulator of RhoA and plays an important role in the assembly of the contractile ring and the initiation of cytokinesis. MgcRacGAP-like proteins contain a N-terminal C1-like domain, and a C-terminal RhoGAP domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239847  Cd Length: 193  Bit Score: 75.41  E-value: 3.81e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1058 VPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLraGKHQLEDVTAVLKSFLSDIDDALLTKELYP 1137
Cdd:cd04382    17 IPALIVHCVNEIEARGLTEEGLYRVSGSEREVKALKEKFLRGKTVPNL--SKVDIHVICGCLKDFLRSLKEPLITFALWK 94
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1138 YWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEiNHMNAHNLALVFSSCLFQTKGQTSEEVNVIE 1217
Cdd:cd04382    95 EFMEAAEILDEDNSRAALYQAISELPQPNRDTLAFLILHLQRVAQSPE-CKMDINNLARVFGPTIVGYSVPNPDPMTILQ 173
                         170
                  ....*....|..
gi 152012529 1218 DlINNYVEIFEV 1229
Cdd:cd04382   174 D-TVRQPRVVER 184
RhoGAP_ARHGAP6 cd04376
RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1058-1232 1.13e-14

RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP6-like proteins. ArhGAP6 shows GAP activity towards RhoA, but not towards Cdc42 and Rac1. ArhGAP6 is often deleted in microphthalmia with linear skin defects syndrome (MLS); MLS is a severe X-linked developmental disorder. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239841  Cd Length: 206  Bit Score: 74.40  E-value: 1.13e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1058 VPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKdarsfklraGK-------HQLEDVTAVLKSFLSDIDDAL 1130
Cdd:cd04376     9 VPRLVESCCQHLEKHGLQTVGIFRVGSSKKRVRQLREEFDR---------GIdvvldenHSVHDVAALLKEFFRDMPDPL 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1131 LTKELYPYWISALdTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINH-----------MNAHNLALVFS 1199
Cdd:cd04376    80 LPRELYTAFIGTA-LLEPDEQLEALQLLIYLLPPCNCDTLHRLLKFLHTVAEHAADSIdedgqevsgnkMTSLNLATIFG 158
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|....*..
gi 152012529 1200 SCLFQ-TKGQTSEE-------------VNVIEDLINNYVEIFEVKED 1232
Cdd:cd04376   159 PNLLHkQKSGEREFvqaslrieestaiINVVQTMIDNYEELFMVSPE 205
RhoGAP_FAM13A1a cd04393
RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1048-1203 1.86e-14

RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of FAM13A1, isoform a-like proteins. The function of FAM13A1a is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by up several orders of magnitude.


Pssm-ID: 239858 [Multi-domain]  Cd Length: 189  Bit Score: 73.65  E-value: 1.86e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1048 LQDQQLSKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDplhiSELLESFKKdarsfKLRAGKHQ----LEDVTAV---LK 1120
Cdd:cd04393    10 LQQAGQPENGVPAVVRHIVEYLEQHGLEQEGLFRVNGN----AETVEWLRQ-----RLDSGEEVdlskEADVCSAaslLR 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1121 SFLSDIDDALLTKELYPYWISAL-DTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFS 1199
Cdd:cd04393    81 LFLQELPEGLIPASLQIRLMQLYqDYNGEDEFGRKLRDLLQQLPPVNYSLLKFLCHFLSNVASQHHENRMTAENLAAVFG 160

                  ....
gi 152012529 1200 SCLF 1203
Cdd:cd04393   161 PDVF 164
RhoGAP_fLRG1 cd04397
RhoGAP_fLRG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1054-1232 1.93e-13

RhoGAP_fLRG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal LRG1-like proteins. Yeast Lrg1p is required for efficient cell fusion, and mother-daughter cell separation, possibly through acting as a RhoGAP specifically regulating 1,3-beta-glucan synthesis. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239862  Cd Length: 213  Bit Score: 71.24  E-value: 1.93e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1054 SKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRAGKHQLEdVTAVLKSFLSDIDDALLTK 1133
Cdd:cd04397    23 GKLRIPALIDDIISAMRQMDMSVEGVFRKNGNIRRLKELTEEIDKNPTEVPDLSKENPVQ-LAALLKKFLRELPDPLLTF 101
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1134 ELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEI-----NHMNAHNLALVFSSCLFQTKGQ 1208
Cdd:cd04397   102 KLYRLWISSQKIEDEEERKRVLHLVYCLLPKYHRDTMEVLFSFLKWVSSFSHIdeetgSKMDIHNLATVITPNILYSKTD 181
                         170       180       190
                  ....*....|....*....|....*....|.
gi 152012529 1209 TSEEVN-------VIEDLINNYVEIFEVKED 1232
Cdd:cd04397   182 NPNTGDeyflaieAVNYLIENNEEFCEVPDE 212
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
415-499 1.95e-13

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 67.57  E-value: 1.95e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  415 KSGWLDKLSPQGKRMFQKRWVKFDGLSISYYNNEKEM--YSKGIIPLSAISTVRVQGD----NKFEVVTT-QRTFVFRVE 487
Cdd:cd00821     1 KEGYLLKRGGGGLKSWKKRWFVLFEGVLLYYKSKKDSsyKPKGSIPLSGILEVEEVSPkerpHCFELVTPdGRTYYLQAD 80
                          90
                  ....*....|..
gi 152012529  488 KEEERNDWISIL 499
Cdd:cd00821    81 SEEERQEWLKAL 92
RhoGap_RalBP1 cd04381
RhoGap_RalBP1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
1057-1199 2.02e-13

RhoGap_RalBP1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in RalBP1 proteins, also known as RLIP, RLIP76 or cytocentrin. RalBP1 plays an important role in endocytosis during interphase. During mitosis, RalBP1 transiently associates with the centromere and has been shown to play an essential role in the proper assembly of the mitotic apparatus. RalBP1 is an effector of the Ral GTPase which itself is an effector of Ras. RalBP1 contains a RhoGAP domain, which shows weak activity towards Rac1 and Cdc42, but not towards Ral, and a Ral effector domain binding motif. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239846 [Multi-domain]  Cd Length: 182  Bit Score: 70.16  E-value: 2.02e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1057 DVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKkdarsfklRAGKHQLED-----VTAVLKSFLSDIDDALL 1131
Cdd:cd04381    19 DLPLVFRECIDYVEKHGMKCEGIYKVSGIKSKVDELKAAYN--------RRESPNLEEyepptVASLLKQYLRELPEPLL 90
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 152012529 1132 TKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFS 1199
Cdd:cd04381    91 TKELMPRFEEACGRPTEAEREQELQRLLKELPECNRLLLAWLIVHMDHVIAQELETKMNIQNISIVLS 158
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
414-504 7.43e-13

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 66.03  E-value: 7.43e-13
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529    414 VKSGWLDKLSPQGKRMFQKRWVKFDGLSISYYNNEKEMYS---KGIIPLSAIsTVRVQGDNK-------FEVVTTQR-TF 482
Cdd:smart00233    2 IKEGWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKDKKSykpKGSIDLSGC-TVREAPDPDsskkphcFEIKTSDRkTL 80
                            90       100
                    ....*....|....*....|..
gi 152012529    483 VFRVEKEEERNDWISILLNALK 504
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
ArfGap_GIT1 cd08846
GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
630-701 1.05e-12

GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350071 [Multi-domain]  Cd Length: 111  Bit Score: 65.89  E-value: 1.05e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 152012529  630 CADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMdaSIWSNELIELFIVIGNKRANDFWAGNL 701
Cdd:cd08846    11 CADCSAPDPGWASINRGVLICDECCSVHRSLGRHISIVKHLRH--SAWPPTLLQMVHTLASNGANSIWEHSL 80
ArfGap_AGFG cd08838
ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ...
625-729 1.10e-12

ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350067 [Multi-domain]  Cd Length: 113  Bit Score: 66.06  E-value: 1.10e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  625 ESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGpkdSKVRSLKMdaSIWSNELIELFIVIGNKRANDFWAGNL-QK 703
Cdd:cd08838    11 PENKRCFDCGQRGPTYVNLTFGTFVCTTCSGIHREFN---HRVKSISM--STFTPEEVEFLQAGGNEVARKIWLAKWdPR 85
                          90       100
                  ....*....|....*....|....*.
gi 152012529  704 DEELHMDSPVEKRKNFITQKYKEGKF 729
Cdd:cd08838    86 TDPEPDSGDDQKIREFIRLKYVDKRW 111
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1366-1467 1.99e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 64.88  E-value: 1.99e-12
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   1366 IKEGILKIKEEPSKilsgNKFQDRYFVLRDGFLFLYKD---VKSSKHDKMFSLSSMKFYRGVKKKMKP-PTSWGLTaYSE 1441
Cdd:smart00233    2 IKEGWLYKKSGGGK----KSWKKRYFVLFNSTLLYYKSkkdKKSYKPKGSIDLSGCTVREAPDPDSSKkPHCFEIK-TSD 76
                            90       100
                    ....*....|....*....|....*.
gi 152012529   1442 KHHWHLCCDSSQTQTEWMTSIFIAQH 1467
Cdd:smart00233   77 RKTLLLQAESEEEREKWVEALRKAIA 102
RhoGAP_ARHGAP18 cd04391
RhoGAP_ARHGAP18: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1048-1214 4.41e-12

RhoGAP_ARHGAP18: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP18-like proteins. The function of ArhGAP18 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239856  Cd Length: 216  Bit Score: 67.37  E-value: 4.41e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1048 LQDQQLSKN-DVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISEL---LESfKKDARSFKLRAGKHQleDVTAVLKSFL 1123
Cdd:cd04391    11 ERDQKKVPGsKVPLIFQKLINKLEERGLETEGILRIPGSAQRVKFLcqeLEA-KFYEGTFLWDQVKQH--DAASLLKLFI 87
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1124 SDIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLF 1203
Cdd:cd04391    88 RELPQPLLTVEYLPAFYSVQGLPSKKDQLQALNLLVLLLPEANRDTLKALLEFLQKVVDHEEKNKMNLWNVAMIMAPNLF 167
                         170
                  ....*....|.
gi 152012529 1204 QTKGQTSEEVN 1214
Cdd:cd04391   168 PPRGKHSKDNE 178
ArfGap_ArfGap2 cd09029
Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
626-697 5.10e-12

Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350086 [Multi-domain]  Cd Length: 120  Bit Score: 64.31  E-value: 5.10e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 152012529  626 SNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASiWSNELIELFIVIGNKRANDFW 697
Cdd:cd09029    18 TNKACFDCGAKNPSWASITYGVFLCIDCSGVHRSLGVHLSFIRSTELDSN-WNWFQLRCMQVGGNANATAFF 88
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
414-499 1.07e-11

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 63.03  E-value: 1.07e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKLSpQGKRMFQKRWVKFDGLSISYYNNEKEMYSKGIIPLSAISTVRVQGD----NKFEVVTTQRTFVFRVEKE 489
Cdd:cd13298     7 LKSGYLLKRS-RKTKNWKKRWVVLRPCQLSYYKDEKEYKLRRVINLSELLAVAPLKDkkrkNVFGIYTPSKNLHFRATSE 85
                          90
                  ....*....|
gi 152012529  490 EERNDWISIL 499
Cdd:cd13298    86 KDANEWVEAL 95
PH pfam00169
PH domain; PH stands for pleckstrin homology.
414-504 1.37e-11

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 62.58  E-value: 1.37e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   414 VKSGWLDKLSPQGKRMFQKRWVKFDGLSISYYNNEKEMYS---KGIIPLSAISTVRV------QGDNKFEVVTTQ----R 480
Cdd:pfam00169    2 VKEGWLLKKGGGKKKSWKKRYFVLFDGSLLYYKDDKSGKSkepKGSISLSGCEVVEVvasdspKRKFCFELRTGErtgkR 81
                           90       100
                   ....*....|....*....|....
gi 152012529   481 TFVFRVEKEEERNDWISILLNALK 504
Cdd:pfam00169   82 TYLLQAESEEERKDWIKAIQSAIR 105
ArfGap_ArfGap3 cd09028
Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
626-697 2.38e-11

Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350085 [Multi-domain]  Cd Length: 120  Bit Score: 62.39  E-value: 2.38e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 152012529  626 SNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASiWSNELIELFIVIGNKRANDFW 697
Cdd:cd09028    18 TNKVCFDCGAKNPSWASITYGVFLCIDCSGIHRSLGVHLSFIRSTELDSN-WSWFQLRCMQVGGNANASAFF 88
RhoGAP_fBEM3 cd04400
RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of ...
1057-1228 3.22e-11

RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of fungal BEM3-like proteins. Bem3 is a GAP protein of Cdc42, and is specifically involved in the control of the initial assembly of the septin ring in yeast bud formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239865 [Multi-domain]  Cd Length: 190  Bit Score: 63.92  E-value: 3.22e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1057 DVPIIVNSCIafvtQYGLGCKYIYQK-----NGDPLHISELLESFKKDARSFKLRAG-KHQLEDVTAVLKSFLSDIDDAL 1130
Cdd:cd04400    21 DLPSVVYRCI----EYLDKNRAIYEEgifrlSGSASVIKQLKERFNTEYDVDLFSSSlYPDVHTVAGLLKLYLRELPTLI 96
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1131 LTKELYPYWISALDTQ-DDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLfqtkgQT 1209
Cdd:cd04400    97 LGGELHNDFKRLVEENhDRSQRALELKDLVSQLPQANYDLLYVLFSFLRKIIEHSDVNKMNLRNVCIVFSPTL-----NI 171
                         170
                  ....*....|....*....
gi 152012529 1210 SEEVNVIedLINNYVEIFE 1228
Cdd:cd04400   172 PAGIFVL--FLTDFDCIFG 188
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
415-506 4.06e-11

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 61.16  E-value: 4.06e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  415 KSGWLDKLSPQGKRmFQKRWVKFDGLSISYYNNEKEMYSK--GIIPL-SAISTVRVQGDNKFEVVTTQRTFVFRVEKEEE 491
Cdd:cd13282     1 KAGYLTKLGGKVKT-WKRRWFVLKNGELFYYKSPNDVIRKpqGQIALdGSCEIARAEGAQTFEIVTEKRTYYLTADSEND 79
                          90
                  ....*....|....*
gi 152012529  492 RNDWISILLNALKSQ 506
Cdd:cd13282    80 LDEWIRVIQNVLRRQ 94
RhoGAP_srGAP cd04383
RhoGAP_srGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
1045-1202 4.55e-11

RhoGAP_srGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in srGAPs. srGAPs are components of the intracellular part of Slit-Robo signalling pathway that is important for axon guidance and cell migration. srGAPs contain an N-terminal FCH domain, a central RhoGAP domain and a C-terminal SH3 domain; this SH3 domain interacts with the intracellular proline-rich-tail of the Roundabout receptor (Robo). This interaction with Robo then activates the rhoGAP domain which in turn inhibits Cdc42 activity. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239848  Cd Length: 188  Bit Score: 63.59  E-value: 4.55e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1045 GNALQDQQLSKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRAGKHQLEDVTAVLKSFLS 1124
Cdd:cd04383     5 GSLEEYIQDSGQAIPLVVESCIRFINLYGLQHQGIFRVSGSQVEVNDIKNAFERGEDPLADDQNDHDINSVAGVLKLYFR 84
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 152012529 1125 DIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCL 1202
Cdd:cd04383    85 GLENPLFPKERFEDLMSCVKLENPTERVHQIREILSTLPRSVIIVMRYLFAFLNHLSQFSDENMMDPYNLAICFGPTL 162
RhoGAP_SYD1 cd04379
RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
1042-1203 7.87e-11

RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in SYD-1_like proteins. Syd-1, first identified and best studied in C.elegans, has been shown to play an important role in neuronal development by specifying axonal properties. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239844  Cd Length: 207  Bit Score: 63.25  E-value: 7.87e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1042 GTDGNALQDQQLSKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDARSFKLRAGKHQLEDV-TAVLK 1120
Cdd:cd04379     2 GVPLSRLVEREGESRDVPIVLQKCVQEIERRGLDVIGLYRLCGSAAKKKELRDAFERNSAAVELSEELYPDINViTGVLK 81
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1121 SFLSDIDDALLTKELYPYWISAL--DTQDDKERIKKYG-AFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALV 1197
Cdd:cd04379    82 DYLRELPEPLITPQLYEMVLEALavALPNDVQTNTHLTlSIIDCLPLSAKATLLLLLDHLSLVLSNSERNKMTPQNLAVC 161

                  ....*.
gi 152012529 1198 FSSCLF 1203
Cdd:cd04379   162 FGPVLM 167
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
609-697 9.16e-11

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 66.03  E-value: 9.16e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  609 AETLSD-YEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDAsiWSNELIELFIV 687
Cdd:PLN03114    3 SENLNDkISVFKKLKAKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGVHISFVRSTNLDS--WSSEQLKMMIY 80
                          90
                  ....*....|
gi 152012529  688 IGNKRANDFW 697
Cdd:PLN03114   81 GGNNRAQVFF 90
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
414-505 1.55e-10

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 59.53  E-value: 1.55e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKLSPQGKRMFQKRWVKFDGLSISYYNNEKEMYSKGIIPL-----------SAISTVRVQGDNKFEVVTTQRTF 482
Cdd:cd01251     3 LKEGYLEKTGPKQTDGFRKRWFTLDDRRLMYFKDPLDAFPKGEIFIgskeegysvreGLPPGIKGHWGFGFTLVTPDRTF 82
                          90       100
                  ....*....|....*....|...
gi 152012529  483 VFRVEKEEERNDWISILLNALKS 505
Cdd:cd01251    83 LLSAETEEERREWITAIQKVLER 105
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
414-513 4.87e-10

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 58.58  E-value: 4.87e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKLSPQGKRmFQKRWVKFDGLSISYYNNEKEMYSKGIIPLSAISTV-RVQ---GDNKFEVVTTQRTFVFRVEKE 489
Cdd:cd13255     7 LKAGYLEKKGERRKT-WKKRWFVLRPTKLAYYKNDKEYRLLRLIDLTDIHTCtEVQlkkHDNTFGIVTPARTFYVQADSK 85
                          90       100
                  ....*....|....*....|....
gi 152012529  490 EERNDWISILlnALKSQSLTSQSQ 513
Cdd:cd13255    86 AEMESWISAI--NLARQALRATIT 107
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
842-928 4.95e-10

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 57.94  E-value: 4.95e-10
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529    842 EKKLLEETNKKWCVLEGGFLSYYENDK---STTPNGTININEVICLAIHKEDfylNTGPIFIFEIYLPSERVFLFGAETS 918
Cdd:smart00233   11 SGGGKKSWKKRYFVLFNSTLLYYKSKKdkkSYKPKGSIDLSGCTVREAPDPD---SSKKPHCFEIKTSDRKTLLLQAESE 87
                            90
                    ....*....|
gi 152012529    919 QAQRKWTEAI 928
Cdd:smart00233   88 EEREKWVEAL 97
RhoGAP_ARHGAP19 cd04392
RhoGAP_ARHGAP19: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1039-1233 7.74e-10

RhoGAP_ARHGAP19: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP19-like proteins. The function of ArhGAP19 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239857  Cd Length: 208  Bit Score: 60.55  E-value: 7.74e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1039 KAAGTDGNALQDQQLskndvpiivnscIAFVTQyGLGCKYIYQKNGDPLHISELLESFKKDArSFKLRAGKHQLEDVTAV 1118
Cdd:cd04392     2 GAPLTEEGIAQIYQL------------IEYLEK-NLRVEGLFRKPGNSARQQELRDLLNSGT-DLDLESGGFHAHDCATV 67
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1119 LKSFLSDIDDALLTKELYPYW--ISALDTQD---------DKER-IKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEI 1186
Cdd:cd04392    68 LKGFLGELPEPLLTHAHYPAHlqIADLCQFDekgnktsapDKERlLEALQLLLLLLPEENRNLLKLILDLLYQTAKHEDK 147
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|....*..
gi 152012529 1187 NHMNAHNLALVFSSCLFQTKGQTSEEVNVIEDLINNYVEiFEVKEDQ 1233
Cdd:cd04392   148 NKMSADNLALLFTPHLICPRNLTPEDLHENAQKLNSIVT-FMIKHSQ 193
RhoGAP_Graf cd04374
RhoGAP_Graf: GTPase-activator protein (GAP) domain for Rho-like GTPases found in GRAF (GTPase ...
1061-1222 8.82e-10

RhoGAP_Graf: GTPase-activator protein (GAP) domain for Rho-like GTPases found in GRAF (GTPase regulator associated with focal adhesion kinase); Graf is a multi-domain protein, containing SH3 and PH domains, that binds focal adhesion kinase and influences cytoskeletal changes mediated by Rho proteins. Graf exhibits GAP activity toward RhoA and Cdc42, but only weakly activates Rac1. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239839  Cd Length: 203  Bit Score: 60.10  E-value: 8.82e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1061 IVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESF----KKDARSFKLRAGKHQLEDVTAVLKSFLSDIDDALLTKELY 1136
Cdd:cd04374    31 FVRKCIEAVETRGINEQGLYRVVGVNSKVQKLLSLGldpkTSTPGDVDLDNSEWEIKTITSALKTYLRNLPEPLMTYELH 110
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1137 PYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQTKGQTSEEV--- 1213
Cdd:cd04374   111 NDFINAAKSENLESRVNAIHSLVHKLPEKNREMLELLIKHLTNVSDHSKKNLMTVSNLGVVFGPTLLRPQEETVAAImdi 190
                         170
                  ....*....|...
gi 152012529 1214 ---N-VIEDLINN 1222
Cdd:cd04374   191 kfqNiVVEILIEN 203
RhoGAP_fSAC7_BAG7 cd04396
RhoGAP_fSAC7_BAG7: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
1050-1227 9.09e-10

RhoGAP_fSAC7_BAG7: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal SAC7 and BAG7-like proteins. Both proteins are GTPase activating proteins of Rho1, but differ functionally in vivo: SAC7, but not BAG7, is involved in the control of Rho1-mediated activation of the PKC-MPK1 pathway. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239861  Cd Length: 225  Bit Score: 60.50  E-value: 9.09e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1050 DQQLSKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDAR-SFKLRAGKHQLEDVTAVLKSFLSDIDD 1128
Cdd:cd04396    24 GEQYVYGYIPVVVAKCGVYLKENATEVEGIFRVAGSSKRIRELQLIFSTPPDyGKSFDWDGYTVHDAASVLRRYLNNLPE 103
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1129 ALLTKELY-----------------PYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNA 1191
Cdd:cd04396   104 PLVPLDLYeefrnplrkrprilqymKGRINEPLNTDIDQAIKEYRDLITRLPNLNRQLLLYLLDLLAVFARNSDKNLMTA 183
                         170       180       190
                  ....*....|....*....|....*....|....*.
gi 152012529 1192 HNLALVFSSCLFqtkGQTSEEVNVIEDLINNYVEIF 1227
Cdd:cd04396   184 SNLAAIFQPGIL---SHPDHEMDPKEYKLSRLVVEF 216
RhoGAP-ARHGAP11A cd04394
RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1096-1226 3.82e-09

RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP11A-like proteins. The mouse homolog of human ArhGAP11A has been detected as a gene exclusively expressed in immature ganglion cells, potentially playing a role in retinal development. The exact function of ArhGAP11A is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239859 [Multi-domain]  Cd Length: 202  Bit Score: 58.25  E-value: 3.82e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1096 FKKDARSFKLRAGKHQLE------------DVTAVLKSFLSDIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLP 1163
Cdd:cd04394    41 FRKSGSVVRQKELKAKLEggeaclssalpcDVAGLLKQFFRELPEPLLPYDLHEALLKAQELPTDEERKSATLLLTCLLP 120
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 152012529 1164 GVNRATLAAIIEHLYRV-QKCSEiNHMNAHNLALVFSSCLFQTKG-----------QTSEEVNVIEDLINNYVEI 1226
Cdd:cd04394   121 DEHVNTLRYFFSFLYDVaQRCSE-NKMDSSNLAVIFAPNLFQSEEggekmssstekRLRLQAAVVQTLIDNASNI 194
RhoGAP_PARG1 cd04409
RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1054-1215 9.04e-09

RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of PARG1 (PTPL1-associated RhoGAP1). PARG1 was originally cloned as an interaction partner of PTPL1, an intracellular protein-tyrosine phosphatase. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239874  Cd Length: 211  Bit Score: 57.51  E-value: 9.04e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1054 SKNDVPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKdarsfklraGKHQLE-------DVTAVLKSFLSDI 1126
Cdd:cd04409    12 SPDGIPFIIKKCTSEIESRALCLKGIYRVNGAKSRVEKLCQAFEN---------GKDLVElselsphDISNVLKLYLRQL 82
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1127 DDALLTKELYPYWI-------SALDTQDDKERIKKYGA---------------FIRSLPGVNRATLAAIIEHLYRVQKCS 1184
Cdd:cd04409    83 PEPLILFRLYNEFIglakesqHVNETQEAKKNSDKKWPnmctelnrillkskdLLRQLPAPNYNTLQFLIVHLHRVSEQA 162
                         170       180       190
                  ....*....|....*....|....*....|.
gi 152012529 1185 EINHMNAHNLALVFSSCLFQTKgQTSEEVNV 1215
Cdd:cd04409   163 EENKMSASNLGIIFGPTLIRPR-PTDATVSL 192
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
518-609 1.27e-08

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 54.09  E-value: 1.27e-08
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529    518 PEKCGYLELRGYKA-----KIFTVLSGNSVWLCKNEQDFKSGLGITIIPMNVANVKQVDRT----VKQSFEIITPYR-SF 587
Cdd:smart00233    1 VIKEGWLYKKSGGGkkswkKRYFVLFNSTLLYYKSKKDKKSYKPKGSIDLSGCTVREAPDPdsskKPHCFEIKTSDRkTL 80
                            90       100
                    ....*....|....*....|..
gi 152012529    588 SFTAETEKEKQDWIEAVQQSIA 609
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
401-499 1.79e-08

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 54.16  E-value: 1.79e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  401 SPYACFYGASAKK----VKSGWLDKLSpQGKRMFQKRWVKFDGLSISYYNNEKEMY-SKGIIPLSAISTVRVQGDNK--- 472
Cdd:cd13215     5 SKHLCFFAYLPKRsgavIKSGYLSKRS-KRTLRYTRYWFVLKGDTLSWYNSSTDLYfPAGTIDLRYATSIELSKSNGeat 83
                          90       100
                  ....*....|....*....|....*....
gi 152012529  473 --FEVVTTQRTFVFRVEKEEERNDWISIL 499
Cdd:cd13215    84 tsFKIVTNSRTYKFKADSETSADEWVKAL 112
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
851-928 7.66e-08

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 51.39  E-value: 7.66e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  851 KKWCVLEGGFLSYY--ENDKSTTPNGTININEVICLAIHKEDFYLNTgpifiFEIYLPSERVFLFGAETSQAQRKWTEAI 928
Cdd:cd00821    18 KRWFVLFEGVLLYYksKKDSSYKPKGSIPLSGILEVEEVSPKERPHC-----FELVTPDGRTYYLQADSEEERQEWLKAL 92
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1366-1467 1.02e-07

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 51.79  E-value: 1.02e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  1366 IKEGILKIKEEPSKilsgNKFQDRYFVLRDGFLFLYKDVKSSKHDK---MFSLSSMKFYRGVKKKMKP-PTSWGLTAY-- 1439
Cdd:pfam00169    2 VKEGWLLKKGGGKK----KSWKKRYFVLFDGSLLYYKDDKSGKSKEpkgSISLSGCEVVEVVASDSPKrKFCFELRTGer 77
                           90       100
                   ....*....|....*....|....*...
gi 152012529  1440 SEKHHWHLCCDSSQTQTEWMTSIFIAQH 1467
Cdd:pfam00169   78 TGKRTYLLQAESEEERKDWIKAIQSAIR 105
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
1367-1462 1.13e-07

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 51.00  E-value: 1.13e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1367 KEGILKIKEEPSKilsgNKFQDRYFVLRDGFLFLYKDVK--SSKHDKMFSLSSMKFYRGVKKKmKPPTSWGLTaYSEKHH 1444
Cdd:cd00821     1 KEGYLLKRGGGGL----KSWKKRWFVLFEGVLLYYKSKKdsSYKPKGSIPLSGILEVEEVSPK-ERPHCFELV-TPDGRT 74
                          90
                  ....*....|....*...
gi 152012529 1445 WHLCCDSSQTQTEWMTSI 1462
Cdd:cd00821    75 YYLQADSEEERQEWLKAL 92
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
414-513 1.63e-07

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270090  Cd Length: 114  Bit Score: 51.20  E-value: 1.63e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKlspQGKRM--FQKRWVKFDGLSISYYNNEKEMYSKGIIPLSAISTVRV-------QGDNKFEVVTTQRTFVF 484
Cdd:cd13271     9 IKSGYCVK---QGAVRknWKRRFFILDDNTISYYKSETDKEPLRTIPLREVLKVHEclvksllMRDNLFEIITTSRTFYI 85
                          90       100
                  ....*....|....*....|....*....
gi 152012529  485 RVEKEEERNDWISILLNALKSQSLTSQSQ 513
Cdd:cd13271    86 QADSPEEMHSWIKAISGAIVARRGPSRSS 114
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
520-604 2.18e-07

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 50.23  E-value: 2.18e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  520 KCGYLELRGYKAKI-----FTVLSGNSVWLCKNEQDFKSGLGITIIPMNVANVKQVDR-TVKQSFEIITP-YRSFSFTAE 592
Cdd:cd00821     1 KEGYLLKRGGGGLKswkkrWFVLFEGVLLYYKSKKDSSYKPKGSIPLSGILEVEEVSPkERPHCFELVTPdGRTYYLQAD 80
                          90
                  ....*....|..
gi 152012529  593 TEKEKQDWIEAV 604
Cdd:cd00821    81 SEEERQEWLKAL 92
RhoGAP_fRGD2 cd04399
RhoGAP_fRGD2: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1115-1228 3.88e-07

RhoGAP_fRGD2: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD2-like proteins. Yeast Rgd2 is a GAP protein for Cdc42 and Rho5. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239864  Cd Length: 212  Bit Score: 52.72  E-value: 3.88e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1115 VTAVLKSFLSDIDDALLT-------KELYPYWISALDTQDDKeRIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEIN 1187
Cdd:cd04399    81 VASVLKLYLLELPDSLIPhdiydliRSLYSAYPPSQEDSDTA-RIQGLQSTLSQLPKSHIATLDAIITHFYRLIEITKMG 159
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|
gi 152012529 1188 HMN-------AHNLALVFSSCLFQTKGQTSEE--VNVIEDLINNYVEIFE 1228
Cdd:cd04399   160 ESEeeyadklATSLSREILRPIIESLLTIGDKhgYKFFRDLLTHKDQIFS 209
PH_3BP2 cd13308
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ...
1364-1462 4.79e-07

SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270118  Cd Length: 113  Bit Score: 50.10  E-value: 4.79e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1364 GSIKEGILKIKEEPSKILSgnKFQDRYFVLRDGFLFLYKDVKSSKHDKMFSLS----SMKFYRGVKKKmkpptsWG--LT 1437
Cdd:cd13308     8 DVIHSGTLTKKGGSQKTLQ--NWQLRYVIIHQGCVYYYKNDQSAKPKGVFSLNgynrRAAEERTSKLK------FVfkII 79
                          90       100
                  ....*....|....*....|....*.
gi 152012529 1438 AYSEKHH-WHLCCDSSQTQTEWMTSI 1462
Cdd:cd13308    80 HLSPDHRtWYFAAKSEDEMSEWMEYI 105
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
572-608 5.66e-07

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 49.51  E-value: 5.66e-07
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 152012529  572 RTVKQSFEIITPYRSFSFTAETEKEKQDWIEAVQQSI 608
Cdd:cd01251    67 GHWGFGFTLVTPDRTFLLSAETEEERREWITAIQKVL 103
RhoGAP_ARHGAP22_24_25 cd04390
RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ...
1058-1206 6.86e-07

RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP22, 24 and 25-like proteins; longer isoforms of these proteins contain an additional N-terminal pleckstrin homology (PH) domain. ARHGAP25 (KIA0053) has been identified as a GAP for Rac1 and Cdc42. Short isoforms (without the PH domain) of ARHGAP24, called RC-GAP72 and p73RhoGAP, and of ARHGAP22, called p68RacGAP, has been shown to be involved in angiogenesis and endothelial cell capillary formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239855 [Multi-domain]  Cd Length: 199  Bit Score: 51.67  E-value: 6.86e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1058 VPIIVNSCIAFVTQYGLGCKYIYQKNGDPLHISELLESFKKDAR-SFKLRAGKHQledVTAVLKSFLSDIDDALLTKELY 1136
Cdd:cd04390    22 VPILVEQCVDFIREHGLKEEGLFRLPGQANLVKQLQDAFDAGERpSFDSDTDVHT---VASLLKLYLRELPEPVIPWAQY 98
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 152012529 1137 PYWISA--LDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQTK 1206
Cdd:cd04390    99 EDFLSCaqLLSKDEEKGLGELMKQVSILPKVNYNLLSYICRFLDEVQSNSSVNKMSVQNLATVFGPNILRPK 170
PLN03131 PLN03131
hypothetical protein; Provisional
627-729 1.30e-06

hypothetical protein; Provisional


Pssm-ID: 178677 [Multi-domain]  Cd Length: 705  Bit Score: 53.24  E-value: 1.30e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLgpkDSKVRSLKMdaSIWSNELIELFIVIGNKRANDFWAGNL-QKDE 705
Cdd:PLN03131   23 NRRCINCNSLGPQFVCTNFWTFICMTCSGIHREF---THRVKSVSM--SKFTSQDVEALQNGGNQRAREIYLKDWdQQRQ 97
                          90       100
                  ....*....|....*....|....
gi 152012529  706 ELHMDSPVEKRKNFITQKYKEGKF 729
Cdd:PLN03131   98 RLPDNSKVDKIREFIKDIYVDKKY 121
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
415-497 1.45e-06

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 48.47  E-value: 1.45e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  415 KSGWLDKlspQGK--RMFQKRW-VKFDGLSISYYNNEKEMYSK--GIIPLSAISTVR-----VQGDNKFEVVTTQRTFVF 484
Cdd:cd13276     1 KAGWLEK---QGEfiKTWRRRWfVLKQGKLFWFKEPDVTPYSKprGVIDLSKCLTVKsaedaTNKENAFELSTPEETFYF 77
                          90
                  ....*....|...
gi 152012529  485 RVEKEEERNDWIS 497
Cdd:cd13276    78 IADNEKEKEEWIG 90
RA pfam00788
Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); ...
1260-1347 1.75e-06

Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Recent evidence (not yet in MEDLINE) shows that some RA domains do NOT bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase.


Pssm-ID: 425871  Cd Length: 93  Bit Score: 47.71  E-value: 1.75e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  1260 IEVYVERKEPDC-SIIIRISPVMEAEELTNDILAIKNIIPTKGDiWATFEVIENEELERPLHYKENVLEQVLRWSSlaEP 1338
Cdd:pfam00788    5 LKVYTEDGKPGTtYKTILVSSSTTAEEVIEALLEKFGLEDDPRD-YVLVEVLERGGGERRLPDDECPLQIQLQWPR--DA 81

                   ....*....
gi 152012529  1339 GSAYLVVKR 1347
Cdd:pfam00788   82 SDSRFLLRK 90
PH_Skap_family cd13266
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ...
848-930 1.89e-06

Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270086  Cd Length: 106  Bit Score: 47.90  E-value: 1.89e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  848 ETNKKWCVLEGGFLSYYENDKSTTPNGTININeviclaihkeDFYLNTGPIF--------IFEIYLPSERVFLFGAETSQ 919
Cdd:cd13266    20 EWQKRWCAISKNVFYYYGSDKDKQQKGEFAIN----------GYDVRMNPTLrkdgkkdcCFELVCPDKRTYQFTAASPE 89
                          90
                  ....*....|.
gi 152012529  920 AQRKWTEAIAK 930
Cdd:cd13266    90 DAEDWVDQISF 100
RhoGAP_DLC1 cd04375
RhoGAP_DLC1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
1111-1204 2.35e-06

RhoGAP_DLC1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of DLC1-like proteins. DLC1 shows in vitro GAP activity towards RhoA and CDC42. Beside its C-terminal GAP domain, DLC1 also contains a SAM (sterile alpha motif) and a START (StAR-related lipid transfer action) domain. DLC1 has tumor suppressor activity in cell culture. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239840  Cd Length: 220  Bit Score: 50.49  E-value: 2.35e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1111 QLEDVTAVLKSFLSDIDDALLTKELYPYWISALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMN 1190
Cdd:cd04375    71 QAYDVADMLKQYFRDLPEPLLTNKLSETFIAIFQYVPKEQRLEAVQCAILLLPDENREVLQTLLYFLSDVAANSQENQMT 150
                          90
                  ....*....|....
gi 152012529 1191 AHNLALVFSSCLFQ 1204
Cdd:cd04375   151 ATNLAVCLAPSLFH 164
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
849-931 3.16e-06

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 47.62  E-value: 3.16e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  849 TNKKWCVLEGGFLSYYENDKSTT-PNGTININEVIclAIHKEDfyLNTGPIFIFEIYLpSERVFLFGAETSQAQRKWTEA 927
Cdd:cd13215    37 YTRYWFVLKGDTLSWYNSSTDLYfPAGTIDLRYAT--SIELSK--SNGEATTSFKIVT-NSRTYKFKADSETSADEWVKA 111

                  ....
gi 152012529  928 IAKH 931
Cdd:cd13215   112 LKKQ 115
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
578-613 3.36e-06

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 47.21  E-value: 3.36e-06
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 152012529  578 FEIITPYRSFSFTAETEKEKQDWIEAVQQSIAETLS 613
Cdd:cd13250    63 FEVISPTKSYMLQAESEEDRQAWIQAIQSAIASALN 98
RhoGAP_KIAA1688 cd04389
RhoGAP_KIAA1688: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ...
1112-1216 3.88e-06

RhoGAP_KIAA1688: GTPase-activator protein (GAP) domain for Rho-like GTPases found in KIAA1688-like proteins; KIAA1688 is a protein of unknown function that contains a RhoGAP domain and a myosin tail homology 4 (MyTH4) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239854  Cd Length: 187  Bit Score: 49.31  E-value: 3.88e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1112 LEDV---TAVLKSFLSDIDDALLTKELYPYWISALDTQDDKERIkkygafIRSLPGVNRATLAAIIEHLyrvQKCS---- 1184
Cdd:cd04389    70 LEDPhvpASLLKLWLRELEEPLIPDALYQQCISASEDPDKAVEI------VQKLPIINRLVLCYLINFL---QVFAqpen 140
                          90       100       110
                  ....*....|....*....|....*....|...
gi 152012529 1185 -EINHMNAHNLALVFSSCLFQTkgqTSEEVNVI 1216
Cdd:cd04389   141 vAHTKMDVSNLAMVFAPNILRC---TSDDPRVI 170
PH_Skap1 cd13380
Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 ...
848-928 4.95e-06

Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270180  Cd Length: 106  Bit Score: 46.77  E-value: 4.95e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  848 ETNKKWCVLEGGFLSYYENDKSTTPNGTININEVIC-LAIH-KEDFYLNTgpifIFEIYLPSERVFLFGAETSQAQRKWT 925
Cdd:cd13380    20 EWQKRWCVLTNRAFYYYASEKSKQPKGGFLIKGYSAqMAPHlRKDSRRDS----CFELTTPGRRTYQFTAASPSEARDWV 95

                  ...
gi 152012529  926 EAI 928
Cdd:cd13380    96 DQI 98
PH pfam00169
PH domain; PH stands for pleckstrin homology.
851-928 5.28e-06

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 46.79  E-value: 5.28e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   851 KKWCVLEGGFLSYYEND---KSTTPNGTININEVICLAIHKEDfylNTGPIFIFEIYLPS---ERVFLFGAETSQAQRKW 924
Cdd:pfam00169   20 KRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVEVVASD---SPKRKFCFELRTGErtgKRTYLLQAESEEERKDW 96

                   ....
gi 152012529   925 TEAI 928
Cdd:pfam00169   97 IKAI 100
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
414-502 6.06e-06

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 46.50  E-value: 6.06e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKLSPQGKRMFQKRWVKFDGLSISYYNNEKEMYSKGIIPLSA--ISTVRVQGD--NKFEVV---TTQRTFVFRV 486
Cdd:cd13248     8 VMSGWLHKQGGSGLKNWRKRWFVLKDNCLYYYKDPEEEKALGSILLPSytISPAPPSDEisRKFAFKaehANMRTYYFAA 87
                          90
                  ....*....|....*.
gi 152012529  487 EKEEERNDWISILLNA 502
Cdd:cd13248    88 DTAEEMEQWMNAMSLA 103
ArfGap_AGFG1 cd08857
ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain ...
627-729 9.58e-06

ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG1 is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG1 plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG1 promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350082 [Multi-domain]  Cd Length: 116  Bit Score: 46.19  E-value: 9.58e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKdSKVRSLKMdaSIWSNELIELFIVIGNKRANDFWAGnLQKDEE 706
Cdd:cd08857    14 NRKCFDCDQRGPTYANMTVGSFVCTSCSGILRGLNPP-HRVKSISM--TTFTQQEIEFLQKHGNEVCKQIWLG-LFDDRS 89
                          90       100
                  ....*....|....*....|....*
gi 152012529  707 LHMDS--PVEKRKNFITQKYKEGKF 729
Cdd:cd08857    90 SAIPDfrDPQKVKEFLQEKYEKKRW 114
RhoGAP_p85 cd04388
RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
1051-1220 1.21e-05

RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in the p85 isoforms of the regulatory subunit of the class IA PI3K (phosphatidylinositol 3'-kinase). This domain is also called Bcr (breakpoint cluster region protein) homology (BH) domain. Class IA PI3Ks are heterodimers, containing a regulatory subunit (p85) and a catalytic subunit (p110) and are activated by growth factor receptor tyrosine kinases (RTKs); this activation is mediated by the p85 subunit. p85 isoforms, alpha and beta, contain a C-terminal p110-binding domain flanked by two SH2 domains, an N-terminal SH3 domain, and a RhoGAP domain flanked by two proline-rich regions. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239853  Cd Length: 200  Bit Score: 47.95  E-value: 1.21e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1051 QQLSKNDV-PIIVNSCIAFVTQYGLGCKYIYqKNGDPLHISELLESFKKDARSFKLRA-GKHQLEDVtavLKSFLSDIDD 1128
Cdd:cd04388     7 EQFSPPDVaPPLLIKLVEAIEKKGLESSTLY-RTQSSSSLTELRQILDCDAASVDLEQfDVAALADA---LKRYLLDLPN 82
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1129 ALLTKELYPYWIS-ALDTQDDKERIKKYGAFIRS--LPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLALVFSSCLFQT 1205
Cdd:cd04388    83 PVIPAPVYSEMISrAQEVQSSDEYAQLLRKLIRSpnLPHQYWLTLQYLLKHFFRLCQSSSKNLLSARALAEIFSPLLFRF 162
                         170
                  ....*....|....*....
gi 152012529 1206 KGQTSEE----VNVIEDLI 1220
Cdd:cd04388   163 QPASSDSpefhIRIIEVLI 181
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
416-506 1.24e-05

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 45.39  E-value: 1.24e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  416 SGWLDKLSPQGKRM--FQKRWVKFD--GLSISYYNNEKEMYSKGIIPLS--AISTVRVQGDNKFEVVTTQRTFVFRVEKE 489
Cdd:cd01265     3 CGYLNKLETRGLGLkgWKRRWFVLDesKCQLYYYRSPQDATPLGSIDLSgaAFSYDPEAEPGQFEIHTPGRVHILKASTR 82
                          90
                  ....*....|....*..
gi 152012529  490 EERNDWisilLNALKSQ 506
Cdd:cd01265    83 QAMLYW----LQALQSK 95
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
850-928 1.33e-05

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 45.69  E-value: 1.33e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 152012529  850 NKKWCVLEGGFLSYYENDKSTTPNGTININEVICLAIHKEDFYLNTgpifiFEIYLPSeRVFLFGAETSQAQRKWTEAI 928
Cdd:cd13298    23 KKRWVVLRPCQLSYYKDEKEYKLRRVINLSELLAVAPLKDKKRKNV-----FGIYTPS-KNLHFRATSEKDANEWVEAL 95
PH_KIFIA_KIFIB cd01233
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ...
410-496 1.54e-05

KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269939  Cd Length: 103  Bit Score: 45.28  E-value: 1.54e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  410 SAKKVKSGWLDKLSPQGKRmFQKRWVKfdgLSISY---YNNEKEMYSKGIIPLSaisTVRVQGD----------NKFEVV 476
Cdd:cd01233     3 SPVVSKRGYLLFLEDATDG-WVRRWVV---LRRPYlhiYSSEKDGDERGVINLS---TARVEYSpdqeallgrpNVFAVY 75
                          90       100
                  ....*....|....*....|
gi 152012529  477 TTQRTFVFRVEKEEERNDWI 496
Cdd:cd01233    76 TPTNSYLLQARSEKEMQDWL 95
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
520-615 1.64e-05

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 45.39  E-value: 1.64e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  520 KCGYLELRGYKAKI----FTVLSGNSVWLCKNEQDFKSGLGITIIPMN-VANVKQV-DRTVKQ-SFEIITPYRSFSFTAE 592
Cdd:cd13276     1 KAGWLEKQGEFIKTwrrrWFVLKQGKLFWFKEPDVTPYSKPRGVIDLSkCLTVKSAeDATNKEnAFELSTPEETFYFIAD 80
                          90       100
                  ....*....|....*....|...
gi 152012529  593 TEKEKQDWIEAVQQSIAETLSDY 615
Cdd:cd13276    81 NEKEKEEWIGAIGRAIVKHSRSV 103
PH_Btk cd01238
Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of ...
415-505 2.10e-05

Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of cytoplasmic protein tyrosine kinases that includes BMX, IL2-inducible T-cell kinase (Itk) and Tec. Btk plays a role in the maturation of B cells. Tec proteins general have an N-terminal PH domain, followed by a Tek homology (TH) domain, a SH3 domain, a SH2 domain and a kinase domain. The Btk PH domain binds phosphatidylinositol 3,4,5-trisphosphate and responds to signalling via phosphatidylinositol 3-kinase. The PH domain is also involved in membrane anchoring which is confirmed by the discovery of a mutation of a critical arginine residue in the BTK PH domain. This results in severe human immunodeficiency known as X-linked agammaglobulinemia (XLA) in humans and a related disorder is mice.PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269944 [Multi-domain]  Cd Length: 140  Bit Score: 46.07  E-value: 2.10e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  415 KSGWLDKLSPQGKRM----FQKRWVKFDGLSISYY--NNEKEMYSKGIIPLSAISTV-RVQGDNKFevvttQRTFVFRV- 486
Cdd:cd01238     1 LEGLLVKRSQGKKRFgpvnYKERWFVLTKSSLSYYegDGEKRGKEKGSIDLSKVRCVeEVKDEAFF-----ERKYPFQVv 75
                          90       100
                  ....*....|....*....|....*....
gi 152012529  487 ----------EKEEERNDWISILLNALKS 505
Cdd:cd01238    76 yddytlyvfaPSEEDRDEWIAALRKVCRN 104
RA cd17043
Ras-associating (RA) domain, structurally similar to a beta-grasp ubiquitin-like fold; RA ...
1259-1347 2.65e-05

Ras-associating (RA) domain, structurally similar to a beta-grasp ubiquitin-like fold; RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in various functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. RA-containing proteins include RalGDS, AF6, RIN, RASSF1, SNX27, CYR1, STE50, and phospholipase C epsilon.


Pssm-ID: 340563  Cd Length: 87  Bit Score: 44.23  E-value: 2.65e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1259 LIEVYVERKEPDCSI-IIRISPVMEAEELTNdILAIKNIIPTKGDIWATFEVIENEELERPLHYKENVLEQVLRWSSLAE 1337
Cdd:cd17043     1 VLKVYDDDLAPGSAYkSILVSSTTTAREVVQ-LLLEKYGLEEDPEDYSLYEVSEKQETERVLHDDECPLLIQLEWGPQGT 79
                          90
                  ....*....|
gi 152012529 1338 PGSayLVVKR 1347
Cdd:cd17043    80 EFR--FVLKR 87
PH2_MyoX cd13296
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ...
415-508 2.92e-05

Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270108  Cd Length: 103  Bit Score: 44.38  E-value: 2.92e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  415 KSGWLDK----LSPQGKRMFQKRWVKFDGLSISYYNNEKEM-YSKGIIPLSAISTV--RVQGDNKFEVVTTQRTFVFRVE 487
Cdd:cd13296     1 KSGWLTKkgggSSTLSRRNWKSRWFVLRDTVLKYYENDQEGeKLLGTIDIRSAKEIvdNDPKENRLSITTEERTYHLVAE 80
                          90       100
                  ....*....|....*....|.
gi 152012529  488 KEEERNDWISILLNALKSQSL 508
Cdd:cd13296    81 SPEDASQWVNVLTRVISATDL 101
PH_APBB1IP cd01259
Amyloid beta (A4) Precursor protein-Binding, family B, member 1 Interacting Protein pleckstrin ...
1368-1467 3.24e-05

Amyloid beta (A4) Precursor protein-Binding, family B, member 1 Interacting Protein pleckstrin homology (PH) domain; APBB1IP consists of a Ras-associated (RA) domain, a PH domain, a family-specific BPS region, and a C-terminal SH2 domain. Grb7, Grb10 and Grb14 are paralogs that are also present in this hierarchy. These adapter proteins bind a variety of receptor tyrosine kinases, including the insulin and insulin-like growth factor-1 (IGF1) receptors. Grb10 and Grb14 are important tissue-specific negative regulators of insulin and IGF1 signaling based and may contribute to type 2 (non-insulin-dependent) diabetes in humans. RA-PH function as a single structural unit and is dimerized via a helical extension of the PH domain. The PH domain here are proposed to bind phosphoinositides non-cannonically ahd are unlikely to bind an activated GTPase. The tandem RA-PH domains are present in a second adapter-protein family, MRL proteins, Caenorhabditis elegans protein MIG-1012, the mammalian proteins RIAM and lamellipodin and the Drosophila melanogaster protein Pico12, all of which are Ena/VASP-binding proteins involved in actin-cytoskeleton rearrangement. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269961  Cd Length: 124  Bit Score: 44.92  E-value: 3.24e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529 1368 EGILKIKEEPSKilsgnKFQDRYFVLRDGFLFLYKDVKS--SKHDKMFS-LSSMKFYRGV--KKKMKPPTSWGL------ 1436
Cdd:cd01259     9 EGFLYLKEDGKK-----SWKKRYFVLRASGLYYSPKGKSkeSRDLQCLAqFDDYNVYTGLngKKKYKAPTDFGFclkpnk 83
                          90       100       110
                  ....*....|....*....|....*....|..
gi 152012529 1437 TAYSEKHHW-HLCCDSSQTQTEWMTSIFIAQH 1467
Cdd:cd01259    84 QQEKGSKDIkYLCAEDEQSRTCWLTAIRLAKY 115
PH_ORP9 cd13290
Human Oxysterol binding protein related protein 9 Pleckstrin homology (PH) domain; Human ORP9 ...
431-511 3.35e-05

Human Oxysterol binding protein related protein 9 Pleckstrin homology (PH) domain; Human ORP9 is proposed to function in regulation of Akt phosphorylation. ORP9 has 2 forms, a long (ORP9L) and a short (ORP9S). ORP9L contains an N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP1S is truncated and contains a FFAT motif and an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241444  Cd Length: 102  Bit Score: 44.36  E-value: 3.35e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  431 QKRWVKFD---GLsISYYNNEKEMYS---KGIIPLS-AISTVRVQGDNKFEVVTTQRTFVFRVEKEEERNDWISILLNAL 503
Cdd:cd13290    16 QYRWFVLDdnaGL-LSYYTSKEKMMRgsrRGCVRLKgAVVGIDDEDDSTFTITVDQKTFHFQARDAEERERWIRALEDTI 94

                  ....*...
gi 152012529  504 KSQSLTSQ 511
Cdd:cd13290    95 LRHSQQYQ 102
PH_OSBP_ORP4 cd13284
Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; ...
415-512 5.01e-05

Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; Human OSBP is proposed to function is sterol-dependent regulation of ERK dephosphorylation and sphingomyelin synthesis as well as modulation of insulin signaling and hepatic lipogenesis. It contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBPs and Osh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. ORP4 is proposed to function in Vimentin-dependent sterol transport and/or signaling. Human ORP4 has 2 forms, a long (ORP4L) and a short (ORP4S). ORP4L contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP4S is truncated and contains only an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270101  Cd Length: 99  Bit Score: 43.91  E-value: 5.01e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  415 KSGWLDKLSPQGKRmFQKRWVKFDGLSISYYNNEKEM--YSKGIIPLSAiSTVRVQGDNKFEVVT-TQRTFVFRVEKEEE 491
Cdd:cd13284     1 MKGWLLKWTNYIKG-YQRRWFVLSNGLLSYYRNQAEMahTCRGTINLAG-AEIHTEDSCNFVISNgGTQTFHLKASSEVE 78
                          90       100
                  ....*....|....*....|.
gi 152012529  492 RNDWISILLNALKSQSLTSQS 512
Cdd:cd13284    79 RQRWVTALELAKAKAIRLLES 99
PLN03119 PLN03119
putative ADP-ribosylation factor GTPase-activating protein AGD14; Provisional
627-729 7.90e-05

putative ADP-ribosylation factor GTPase-activating protein AGD14; Provisional


Pssm-ID: 178666  Cd Length: 648  Bit Score: 47.53  E-value: 7.90e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  627 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLgpkDSKVRSLKMdaSIWSNELIELFIVIGNKRANDFWAGNL-QKDE 705
Cdd:PLN03119   23 NRRCINCNSLGPQYVCTTFWTFVCMACSGIHREF---THRVKSVSM--SKFTSKEVEVLQNGGNQRAREIYLKNWdHQRQ 97
                          90       100
                  ....*....|....*....|....
gi 152012529  706 ELHMDSPVEKRKNFITQKYKEGKF 729
Cdd:PLN03119   98 RLPENSNAERVREFIKNVYVQKKY 121
ArfGap_AGFG2 cd17903
ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain ...
626-729 8.69e-05

ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG2 is a member of the HIV-1 Rev binding protein (HRB) family and contains one Arf-GAP zinc finger domain, several Phe-Gly (FG) motifs, and four Asn-Pro-Phe (NPF) motifs. AGFG2 interacts with Eps15 homology (EH) domains and plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350090 [Multi-domain]  Cd Length: 116  Bit Score: 43.44  E-value: 8.69e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  626 SNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKdSKVRSLKMdaSIWSNELIELFIVIGNKRANDFWAGNLQKDE 705
Cdd:cd17903    13 ANRHCFECAQRGVTYVDITVGSFVCTTCSGLLRGLNPP-HRVKSISM--TTFTEPEVLFLQARGNEVCRKIWLGLFDART 89
                          90       100
                  ....*....|....*....|....*
gi 152012529  706 ELHMDS-PVEKRKNFITQKYKEGKF 729
Cdd:cd17903    90 SLIPDSrDPQKVKEFLQEKYEKKRW 114
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
520-606 8.72e-05

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 43.56  E-value: 8.72e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  520 KCGYLELRGYKAKIFT----VLSGNSVWLCKNEQDFKSglgITIIPMNV------ANVKQVDRTvkqsFEIITPYRSFSF 589
Cdd:cd13255     8 KAGYLEKKGERRKTWKkrwfVLRPTKLAYYKNDKEYRL---LRLIDLTDihtcteVQLKKHDNT----FGIVTPARTFYV 80
                          90
                  ....*....|....*..
gi 152012529  590 TAETEKEKQDWIEAVQQ 606
Cdd:cd13255    81 QADSKAEMESWISAINL 97
PH_IRS cd01257
Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate ...
414-500 9.94e-05

Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.cytoskeletal associated molecules, and in lipid associated enzymes.


Pssm-ID: 269959  Cd Length: 106  Bit Score: 43.05  E-value: 9.94e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKLSPQGKRMFQKRWVKFDGLS-ISYYNNEKEMYS----KGIIPLSAISTV--RVQGDNKFEVV--TTQRTFVF 484
Cdd:cd01257     4 RKSGYLKKLKTMRKRYFVLRAESHGGPArLEYYENEKKFRRnaepKRVIPLSSCFNInkRADAKHKHLIAlyTKDECFGL 83
                          90
                  ....*....|....*.
gi 152012529  485 RVEKEEERNDWISILL 500
Cdd:cd01257    84 VAESEEEQDEWYQALL 99
PH_3BP2 cd13308
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ...
851-928 1.33e-04

SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270118  Cd Length: 113  Bit Score: 42.78  E-value: 1.33e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  851 KKWCVLEGGFLSYYENDKSTTPNGTININEVICLAihKEDfyLNTGPIFIFEIYLPS--ERVFLFGAETSQAQRKWTEAI 928
Cdd:cd13308    30 LRYVIIHQGCVYYYKNDQSAKPKGVFSLNGYNRRA--AEE--RTSKLKFVFKIIHLSpdHRTWYFAAKSEDEMSEWMEYI 105
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
1389-1462 1.36e-04

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 42.61  E-value: 1.36e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 152012529 1389 RYFVLRDGFLFLYKDVKSSKHDKMFSLSSMKFYRGVKKKMKPPTsWGLtaYSEKHHWHLCCDSSQTQTEWMTSI 1462
Cdd:cd13298    25 RWVVLRPCQLSYYKDEKEYKLRRVINLSELLAVAPLKDKKRKNV-FGI--YTPSKNLHFRATSEKDANEWVEAL 95
PH_Gab1_Gab2 cd01266
Grb2-associated binding proteins 1 and 2 pleckstrin homology (PH) domain; The Gab subfamily ...
838-928 2.45e-04

Grb2-associated binding proteins 1 and 2 pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1 and Gab2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241297  Cd Length: 123  Bit Score: 42.63  E-value: 2.45e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  838 KLSSEKKLLEET-NKKWCVLEGGFLS-------YYENDKSTTPNGTININevIC------LAIHKEDFYLNtgpiFIFEI 903
Cdd:cd01266    12 KSPPEKKLRRYAwKKRWFVLRSGRLSgdpdvleYYKNDHAKKPIRVIDLN--LCeqvdagLTFNKKELENS----YIFDI 85
                          90       100
                  ....*....|....*....|....*
gi 152012529  904 YlPSERVFLFGAETSQAQRKWTEAI 928
Cdd:cd01266    86 K-TIDRIFYLVAETEEDMNKWVRNI 109
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
412-496 2.57e-04

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 41.99  E-value: 2.57e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  412 KKVKSGWLDKlspQGK--RMFQKRWVKFDGLSISYYNNEKEMYSKGIIPLSAiSTVRV-----QGDNK--FEVV------ 476
Cdd:cd13263     2 RPIKSGWLKK---QGSivKNWQQRWFVLRGDQLYYYKDEDDTKPQGTIPLPG-NKVKEvpfnpEEPGKflFEIIpggggd 77
                          90       100
                  ....*....|....*....|...
gi 152012529  477 ---TTQRTFVFRVEKEEERNDWI 496
Cdd:cd13263    78 rmtSNHDSYLLMANSQAEMEEWV 100
PH pfam00169
PH domain; PH stands for pleckstrin homology.
518-609 2.98e-04

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 41.78  E-value: 2.98e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   518 PEKCGYLELRGYKAKI-----FTVLSGNSVWLCKNEQDFKSGLGITIIPMN----VANVKQVDRTVKQSFEIIT----PY 584
Cdd:pfam00169    1 VVKEGWLLKKGGGKKKswkkrYFVLFDGSLLYYKDDKSGKSKEPKGSISLSgcevVEVVASDSPKRKFCFELRTgertGK 80
                           90       100
                   ....*....|....*....|....*
gi 152012529   585 RSFSFTAETEKEKQDWIEAVQQSIA 609
Cdd:pfam00169   81 RTYLLQAESEEERKDWIKAIQSAIR 105
PH2_PH_fungal cd13299
Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal ...
522-608 3.10e-04

Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270111  Cd Length: 102  Bit Score: 41.46  E-value: 3.10e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  522 GYLEL---RGYK--AKIFTVLSGNSVWLCKNEQDFKSglgITIIPMN-VANVKQVD---RTVKQSFEIITPYRSFSFTAE 592
Cdd:cd13299    10 GYLQVlkkKGVNqwKKYWLVLRNRSLSFYKDQSEYSP---VKIIPIDdIIDVVELDplsKSKKWCLQIITPEKRIRFCAD 86
                          90
                  ....*....|....*.
gi 152012529  593 TEKEKQDWIEAVQQSI 608
Cdd:cd13299    87 DEESLIKWLGALKSLL 102
PH_Gab-like cd13324
Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are ...
851-930 4.57e-04

Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. There are 3 families: Gab1, Gab2, and Gab3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270133  Cd Length: 112  Bit Score: 41.24  E-value: 4.57e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  851 KKWCVLEGG-------FLSYYENDKSTTPNGTININEviC------LAIHKEDFYLNtgpiFIFEIYLPsERVFLFGAET 917
Cdd:cd13324    23 RRWFVLRSGrlsggqdVLEYYTDDHCKKLKGIIDLDQ--CeqvdagLTFEKKKFKNQ----FIFDIRTP-KRTYYLVAET 95
                          90
                  ....*....|...
gi 152012529  918 SQAQRKWTEAIAK 930
Cdd:cd13324    96 EEEMNKWVRCICQ 108
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
851-930 5.17e-04

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 41.04  E-value: 5.17e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  851 KKWCVLEGGFLSYYENDKSTTPNGTININeviclaiHKEDFY--LNTGPI-------FIFEIYLPsERVFLFGAETSQAQ 921
Cdd:cd01251    21 KRWFTLDDRRLMYFKDPLDAFPKGEIFIG-------SKEEGYsvREGLPPgikghwgFGFTLVTP-DRTFLLSAETEEER 92

                  ....*....
gi 152012529  922 RKWTEAIAK 930
Cdd:cd01251    93 REWITAIQK 101
PH_KIFIA_KIFIB cd01233
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ...
578-609 6.05e-04

KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269939  Cd Length: 103  Bit Score: 40.65  E-value: 6.05e-04
                          10        20        30
                  ....*....|....*....|....*....|..
gi 152012529  578 FEIITPYRSFSFTAETEKEKQDWIEAVQQSIA 609
Cdd:cd01233    72 FAVYTPTNSYLLQARSEKEMQDWLYAIDPLLA 103
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
575-606 6.60e-04

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 40.36  E-value: 6.60e-04
                          10        20        30
                  ....*....|....*....|....*....|..
gi 152012529  575 KQSFEIITPYRSFSFTAETEKEKQDWIEAVQQ 606
Cdd:cd13282    58 AQTFEIVTEKRTYYLTADSENDLDEWIRVIQN 89
PH_ASAP cd13251
ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs ...
415-509 7.60e-04

ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs (ASAP1, ASAP2, and ASAP3) function as an Arf-specific GAPs, participates in rhodopsin trafficking, is associated with tumor cell metastasis, modulates phagocytosis, promotes cell proliferation, facilitates vesicle budding, Golgi exocytosis, and regulates vesicle coat assembly via a Bin/Amphiphysin/Rvs domain. ASAPs contain an NH2-terminal BAR domain, a tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 (SH3) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270071  Cd Length: 108  Bit Score: 40.81  E-value: 7.60e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  415 KSGWLDKLSPQG-KRMFQKRWVK-FDG-LSISYyNNEKEMYSKGIIPLSAISTVRvQGDNKFEVVTTQRTFVFRVEKEEE 491
Cdd:cd13251    12 KSGYLLKKSEGKiRKVWQKRRCSiKDGfLTISH-ADENKPPAKLNLLTCQVKLVP-EDKKCFDLISHNRTYHFQAEDEND 89
                          90
                  ....*....|....*...
gi 152012529  492 RNDWISILLNAlKSQSLT 509
Cdd:cd13251    90 ANAWMSVLKNS-KEQALN 106
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
851-928 7.64e-04

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 40.36  E-value: 7.64e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  851 KKWCVLEGGFLSYY--ENDKSTTPNGTININEVICLAIHKED--FYLNTgpififeiylpSERVFLFGAETSQAQRKWTE 926
Cdd:cd13282    17 RRWFVLKNGELFYYksPNDVIRKPQGQIALDGSCEIARAEGAqtFEIVT-----------EKRTYYLTADSENDLDEWIR 85

                  ..
gi 152012529  927 AI 928
Cdd:cd13282    86 VI 87
PH_RASA1 cd13260
RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 ...
850-930 8.04e-04

RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 (also called RasGap1 or p120) is a member of the RasGAP family of GTPase-activating proteins. RASA1 contains N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Splice variants lack the N-terminal domains. It is a cytosolic vertebrate protein that acts as a suppressor of RAS via its C-terminal GAP domain function, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. Additionally, it is involved in mitogenic signal transmission towards downstream interacting partners through its N-terminal SH2-SH3-SH2 domains. RASA1 interacts with a number of proteins including: G3BP1, SOCS3, ANXA6, Huntingtin, KHDRBS1, Src, EPHB3, EPH receptor B2, Insulin-like growth factor 1 receptor, PTK2B, DOK1, PDGFRB, HCK, Caveolin 2, DNAJA3, HRAS, GNB2L1 and NCK1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270080  Cd Length: 103  Bit Score: 40.41  E-value: 8.04e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  850 NKKW----CVLEGG--FLSYYENDKSTTPNGTININEVICLAIHkeDFYLNTGPIF-IFEIYLPSERVFLFGAETSQAQR 922
Cdd:cd13260    16 NKKWknlyFVLEGKeqHLYFFDNEKRTKPKGLIDLSYCSLYPVH--DSLFGRPNCFqIVVRALNESTITYLCADTAELAQ 93

                  ....*...
gi 152012529  923 KWTEAIAK 930
Cdd:cd13260    94 EWMRALRA 101
PH_Skap_family cd13266
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ...
518-604 1.04e-03

Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270086  Cd Length: 106  Bit Score: 40.20  E-value: 1.04e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  518 PEKCGYLELRGYKAKIF--------TVLSGNSVWLCKNEQDFKSGLGITIIPMNVANVKQVDRTVKQ--SFEIITP-YRS 586
Cdd:cd13266     1 VIKAGYLEKRRKDHSFFgsewqkrwCAISKNVFYYYGSDKDKQQKGEFAINGYDVRMNPTLRKDGKKdcCFELVCPdKRT 80
                          90
                  ....*....|....*...
gi 152012529  587 FSFTAETEKEKQDWIEAV 604
Cdd:cd13266    81 YQFTAASPEDAEDWVDQI 98
PH_SWAP-70 cd13273
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ...
520-609 1.04e-03

Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270092  Cd Length: 110  Bit Score: 40.36  E-value: 1.04e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  520 KCGYLELRGYKAKIFT----VLSGNSVWLCKNEqDFKSGLGITIIPMN-VANVKQVDRTVKQSFEIITPYRSFSFTAETE 594
Cdd:cd13273    10 KKGYLWKKGHLLPTWTerwfVLKPNSLSYYKSE-DLKEKKGEIALDSNcCVESLPDREGKKCRFLVKTPDKTYELSASDH 88
                          90
                  ....*....|....*
gi 152012529  595 KEKQDWIEAVQQSIA 609
Cdd:cd13273    89 KTRQEWIAAIQTAIR 103
PH_11 pfam15413
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
415-499 1.09e-03

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405988  Cd Length: 105  Bit Score: 40.26  E-value: 1.09e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529   415 KSGWLDKLSPQGKRmfqKRW-VKFDGLSISYYNNEKEMYSKGIIPLS------------AISTVRVQGDNK-------FE 474
Cdd:pfam15413    1 IEGYLKKKGPKTWK---HRWfAVLRNGVLFYYKSEKMKVVKHVIVLSnyivgklgtdiiSGALFKIDNIRSetsddllLE 77
                           90       100
                   ....*....|....*....|....*
gi 152012529   475 VVTTQRTFVFRVEKEEERNDWISIL 499
Cdd:pfam15413   78 ISTETKIFFLYGDNNEETYEWVEAL 102
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
415-506 1.30e-03

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 39.51  E-value: 1.30e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  415 KSGWLDKLSPQGKRMFQKRWVKFDGLSISYY-NNEKEMYSKGIIPLSaISTVRVQGD----NKFEVVTTQRTFVFRVEKE 489
Cdd:cd13250     1 KEGYLFKRSSNAFKTWKRRWFSLQNGQLYYQkRDKKDEPTVMVEDLR-LCTVKPTEDsdrrFCFEVISPTKSYMLQAESE 79
                          90
                  ....*....|....*..
gi 152012529  490 EERNDWISILLNALKSQ 506
Cdd:cd13250    80 EDRQAWIQAIQSAIASA 96
PH_DOCK-D cd13267
Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also ...
414-506 1.60e-03

Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also called Zizimin subfamily) consists of Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2. DOCK-D has a N-terminal DUF3398 domain, a PH-like domain, a Dock Homology Region 1, DHR1 (also called CZH1), a C2 domain, and a C-terminal DHR2 domain (also called CZH2). Zizimin1 is enriched in the brain, lung, and kidney; zizimin2 is found in B and T lymphocytes, and zizimin3 is enriched in brain, lung, spleen and thymus. Zizimin1 functions in autoinhibition and membrane targeting. Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. No function has been determined for Zizimin3 to date. The N-terminal half of zizimin1 binds to the GEF domain through three distinct areas, including CZH1, to inhibit the interaction with Cdc42. In addition its PH domain binds phosphoinositides and mediates zizimin1 membrane targeting. DOCK is a family of proteins involved in intracellular signalling networks. They act as guanine nucleotide exchange factors for small G proteins of the Rho family, such as Rac and Cdc42. There are 4 subfamilies of DOCK family proteins based on their sequence homology: A-D. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270087  Cd Length: 126  Bit Score: 40.00  E-value: 1.60e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDK--------LSPQGKRMFQKRWVKF----DGLSI-SYYNNEKEMYSKGIIPLSAISTVRvqgDNK------FE 474
Cdd:cd13267     7 TKEGYLYKgpenssdsFISLAMKSFKRRFFHLkqlvDGSYIlEFYKDEKKKEAKGTIFLDSCTGVV---QNSkrrkfcFE 83
                          90       100       110
                  ....*....|....*....|....*....|...
gi 152012529  475 V-VTTQRTFVFRVEKEEERNDWISILLNALKSQ 506
Cdd:cd13267    84 LrMQDKKSYVLAAESEAEMDEWISKLNKILQSS 116
PH_Gab-like cd13324
Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are ...
414-496 1.66e-03

Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. There are 3 families: Gab1, Gab2, and Gab3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270133  Cd Length: 112  Bit Score: 39.70  E-value: 1.66e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKlSPQGKRMFQKRWVK--F---------DGLSISYYNNEKEMYSKGIIPLSAISTVRVQGDNK---------F 473
Cdd:cd13324     2 VYEGWLTK-SPPEKKIWRAAWRRrwFvlrsgrlsgGQDVLEYYTDDHCKKLKGIIDLDQCEQVDAGLTFEkkkfknqfiF 80
                          90       100
                  ....*....|....*....|...
gi 152012529  474 EVVTTQRTFVFRVEKEEERNDWI 496
Cdd:cd13324    81 DIRTPKRTYYLVAETEEEMNKWV 103
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
851-929 1.70e-03

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 39.91  E-value: 1.70e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  851 KKWCVLEGGFLSYYENDKSTTPNGtinineVICLAIHKEDFyLNTGPIFIFEIYLPSE--RVFLFGAETSQAQRKWTEAI 928
Cdd:cd13288    26 KRWFVLKGNLLFYFEKKGDREPLG------VIVLEGCTVEL-AEDAEPYAFAIRFDGPgaRSYVLAAENQEDMESWMKAL 98

                  .
gi 152012529  929 A 929
Cdd:cd13288    99 S 99
PH_GPBP cd13283
Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called ...
431-507 1.79e-03

Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called Collagen type IV alpha-3-binding protein/hCERT; START domain-containing protein 11/StARD11; StAR-related lipid transfer protein 11) is a kinase that phosphorylates an N-terminal region of the alpha 3 chain of type IV collagen, which is commonly known as the goodpasture antigen. Its splice variant the ceramide transporter (CERT) mediates the cytosolic transport of ceramide. There have been additional splice variants identified, but all of them function as ceramide transport proteins. GPBP and CERT both contain an N-terminal PH domain, followed by a serine rich domain, and a C-terminal START domain. However, GPBP has an additional serine rich domain just upstream of its START domain. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270100 [Multi-domain]  Cd Length: 100  Bit Score: 39.19  E-value: 1.79e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  431 QKRWVKFDGLSISYY--NNEKEMYSKGIIPLS-AISTVRVQGDNKFEVVTTQRTFVFRVEKEEERNDWISiLLNALKSQS 507
Cdd:cd13283    16 QDRYFVLKDGTLSYYksESEKEYGCRGSISLSkAVIKPHEFDECRFDVSVNDSVWYLRAESPEERQRWID-ALESHKAAS 94
Niban-like cd23949
Niban-like protein; Niban-like proteins contain an N-terminal Pleckstrin-Homology (PH) domain ...
833-924 1.80e-03

Niban-like protein; Niban-like proteins contain an N-terminal Pleckstrin-Homology (PH) domain that may be involved in binding to specific ligands. Phosphatidylinositol (3)-phosphate (PI3P) was recognized as the innate ligand of the PH domain of MINERVA (melanoma invasion by ERK, also known as FAM129B) PH. Niban family proteins have been found to regulate phosphorylation of a number of proteins involved in the regularion of translation, such as EIF2A, EIF4EBP1 and RPS6KB1. They may also be involved in the endoplasmic reticulum stress response (FAM129A, Niban-like protein 1), suggested to play a role in apoptosis suppression in cancer cells, while Niban-like protein 2 (FAM129C) is a B-cell membrane protein that is overexpressed in chronic lymphocytic leukemia.


Pssm-ID: 469558 [Multi-domain]  Cd Length: 550  Bit Score: 43.05  E-value: 1.80e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  833 PSAASKLSSEKKL--LEETNKKW----CVLEGGF-LSYYEN----DKSTTPNGTINI------------NEVIC--LAIH 887
Cdd:cd23949    56 PPEDRKVIFSGKLskYGEDSKKWkerfCVVRGDYnLEYYESkeayERGKKPKGSINLagykvltspeeyLELVDrkFPDL 135
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 152012529  888 KEDFYLNTGPI------FIFEIYLPSERVFLFGAETSQAQRKW 924
Cdd:cd23949   136 AGKSEKASVPFperpppFTLELYHPYRRHYYFCFETEKEQEEW 178
PH2_MyoX cd13296
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ...
520-614 2.42e-03

Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270108  Cd Length: 103  Bit Score: 38.99  E-value: 2.42e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  520 KCGYLELRG----------YKAKIFtVLSGNSVWLCKNEQDFKSGLGiTIipmNV-ANVKQVDRTVKQ-SFEIITPYRSF 587
Cdd:cd13296     1 KSGWLTKKGggsstlsrrnWKSRWF-VLRDTVLKYYENDQEGEKLLG-TI---DIrSAKEIVDNDPKEnRLSITTEERTY 75
                          90       100
                  ....*....|....*....|....*..
gi 152012529  588 SFTAETEKEKQDWIEAVQQSIAETLSD 614
Cdd:cd13296    76 HLVAESPEDASQWVNVLTRVISATDLE 102
PH_Boi cd13316
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ...
416-502 2.44e-03

Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270126  Cd Length: 97  Bit Score: 38.89  E-value: 2.44e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  416 SGWLDKlspQGKRM--FQKRWVKFDGLSISYYNNEKEMYSKGIIPLSAISTVRVQGDNK------FEVV--TTQRTFVFR 485
Cdd:cd13316     3 SGWMKK---RGERYgtWKTRYFVLKGTRLYYLKSENDDKEKGLIDLTGHRVVPDDSNSPfrgsygFKLVppAVPKVHYFA 79
                          90
                  ....*....|....*..
gi 152012529  486 VEKEEERNDWISILLNA 502
Cdd:cd13316    80 VDEKEELREWMKALMKA 96
PH_Skap_family cd13266
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ...
414-507 2.49e-03

Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270086  Cd Length: 106  Bit Score: 39.04  E-value: 2.49e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKLSPQGK---RMFQKRWVKFDGLSISYYNNEKEMYSKGIIPLS-----AISTVRVQG--DNKFEVVT-TQRTF 482
Cdd:cd13266     2 IKAGYLEKRRKDHSffgSEWQKRWCAISKNVFYYYGSDKDKQQKGEFAINgydvrMNPTLRKDGkkDCCFELVCpDKRTY 81
                          90       100
                  ....*....|....*....|....*
gi 152012529  483 VFRVEKEEERNDWISILLNALKSQS 507
Cdd:cd13266    82 QFTAASPEDAEDWVDQISFILQDLS 106
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
949-1041 2.99e-03

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 38.68  E-value: 2.99e-03
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529    949 GQLFYKDCHALDQWRKGWFAMDKSSLHFCLQMQEVQGDR-MHLRRLQELTISTMVQNGEKLD---VLLLVEKGRTLYIHG 1024
Cdd:smart00233    5 GWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKDKKSYKpKGSIDLSGCTVREAPDPDSSKKphcFEIKTSDRKTLLLQA 84
                            90
                    ....*....|....*..
gi 152012529   1025 HTKLDFTVWHTAIEKAA 1041
Cdd:smart00233   85 ESEEEREKWVEALRKAI 101
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
432-496 3.06e-03

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270074  Cd Length: 90  Bit Score: 38.55  E-value: 3.06e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  432 KRWVKFDGLSISYYNNEKEmYSKGI----IPLSAiSTVRvQGDNK-FEVVTTQRTFVFRVEKEEERNDWI 496
Cdd:cd13254    20 KVYAALMGDEVWLYKNEQD-FRLGIgitvIEMNG-ANVK-DVDRRsFDLTTPYRSFSFTAESEHEKQEWI 86
PH_Phafin2-like cd01218
Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; ...
559-602 3.11e-03

Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; Phafin2 is differentially expressed in the liver cancer cell and regulates the structure and function of the endosomes through Rab5-dependent processes. Phafin2 modulates the cell's response to extracellular stimulation by modulating the receptor density on the cell surface. Phafin2 contains a PH domain and a FYVE domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269927 [Multi-domain]  Cd Length: 123  Bit Score: 39.16  E-value: 3.11e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*.
gi 152012529  559 IIPMNVANVKQVDRT--VKQSFEIITPYRSFSFTAETEKEKQDWIE 602
Cdd:cd01218    73 IIPLEDVKIEDLEDTgeLKNGWQIISPKKSFVVYAATATEKSEWMD 118
PH_DGK_type2 cd13274
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ...
572-607 3.12e-03

Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270093  Cd Length: 97  Bit Score: 38.53  E-value: 3.12e-03
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 152012529  572 RTVKQSFEIITPYRSFSFTAETEKEKQDWIEAVQQS 607
Cdd:cd13274    55 KNVNNSFTVITPFRKLILCAESRKEMEEWISALKTV 90
PH2_PH_fungal cd13299
Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal ...
414-505 3.70e-03

Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270111  Cd Length: 102  Bit Score: 38.38  E-value: 3.70e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKLSPQGKRMFQKRWVKFDGLSISYYNNEKEMYSKGIIPLSAI-STVRVQGDNK-----FEVVTTQRTFVFRVE 487
Cdd:cd13299     7 IEQGYLQVLKKKGVNQWKKYWLVLRNRSLSFYKDQSEYSPVKIIPIDDIiDVVELDPLSKskkwcLQIITPEKRIRFCAD 86
                          90
                  ....*....|....*...
gi 152012529  488 KEEERNDWISillnALKS 505
Cdd:cd13299    87 DEESLIKWLG----ALKS 100
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
851-924 3.74e-03

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 38.14  E-value: 3.74e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 152012529  851 KKWCVLEGGFLSYYENDKSTTPNGTININEVICLAIHKEdfylntgpiFIFEIyLPSERVFLFGAETSQAQRKW 924
Cdd:cd13253    20 KRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVGD---------NKFEL-VTTNRTFVFRAESDDERNLW 83
PH_Cla4_Ste20 cd13279
Pleckstrin homology (PH) domain; Budding yeast contain two main p21-activated kinases (PAKs), ...
413-496 4.22e-03

Pleckstrin homology (PH) domain; Budding yeast contain two main p21-activated kinases (PAKs), Cla4 and Ste20. The yeast Ste20 protein kinase is involved in pheromone response, though the function of Ste20 mammalian homologs is unknown. Cla4 is involved in budding and cytokinesis and interacts with Cdc42, a GTPase required for polarized cell growth as is Pak. Cla4 and Ste20 kinases share a function in localizing cell growth with respect to the septin ring. They both contain a PH domain, a Cdc42/Rac interactive binding (CRIB) domain, and a C-terminal Protein Kinase catalytic (PKc) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270097  Cd Length: 92  Bit Score: 38.00  E-value: 4.22e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  413 KVKSGWL----DKLSPQgkrMFQKRWVKFDGLSISYYNNEKEMYSKGIIPLSAISTV-RVqgDNK---FEVVT--TQRTF 482
Cdd:cd13279     1 VVKSGWVsvkeDGLLSF---RWSKRYLVLREQSLDFYKNESSSSASLSIPLKDISNVsRT--DLKpycFEIVRksSTKSI 75
                          90
                  ....*....|....
gi 152012529  483 VFRVEKEEERNDWI 496
Cdd:cd13279    76 YISVKSDDELYDWM 89
PH_MELT_VEPH1 cd01264
Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone ...
526-611 5.21e-03

Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone expressed PH domain-containing protein homolog 1) is expressed in the developing central nervous system of vertebrates. It contains a single C-terminal PH domain that is required for membrane targeting. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269965  Cd Length: 105  Bit Score: 38.21  E-value: 5.21e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  526 LRGYKAKIFTvLSGNSVwLCKNEQDFKSGLGITIIPM-NVANVKQVDRTVKQSFEIITPYRSFSFTAETEKEKQDWIEAV 604
Cdd:cd01264    18 FKRWRTRYFT-LSGAQL-SYRGGKSKPDAPPIELSKIrSVKVVRKKDRSIPKAFEIFTDDKTYVLKAKDEKNAEEWLQCL 95

                  ....*..
gi 152012529  605 QQSIAET 611
Cdd:cd01264    96 SIAVAQA 102
PH_3BP2 cd13308
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ...
415-499 5.70e-03

SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270118  Cd Length: 113  Bit Score: 38.16  E-value: 5.70e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  415 KSGWLDKL--SPQGKRMFQKRWVKFDGLSISYYNNEKEMYSKGIIPLSAISTV---RVQGDNKF-----EVVTTQRTFVF 484
Cdd:cd13308    11 HSGTLTKKggSQKTLQNWQLRYVIIHQGCVYYYKNDQSAKPKGVFSLNGYNRRaaeERTSKLKFvfkiiHLSPDHRTWYF 90
                          90
                  ....*....|....*
gi 152012529  485 RVEKEEERNDWISIL 499
Cdd:cd13308    91 AAKSEDEMSEWMEYI 105
PH_Sbf1_hMTMR5 cd01235
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ...
417-496 5.71e-03

Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269941  Cd Length: 106  Bit Score: 38.08  E-value: 5.71e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  417 GWLDKlspQGKRM--FQKRWVKFDGLS--ISYYNNEKEMYSKGIIPLSAISTVRV---------QGDNK--FEVVTTQRT 481
Cdd:cd01235     7 GYLYK---RGALLkgWKQRWFVLDSTKhqLRYYESREDTKCKGFIDLAEVESVTPatpiigapkRADEGafFDLKTNKRV 83
                          90
                  ....*....|....*
gi 152012529  482 FVFRVEKEEERNDWI 496
Cdd:cd01235    84 YNFCAFDAESAQQWI 98
PH_Skap1 cd13380
Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 ...
414-504 7.38e-03

Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270180  Cd Length: 106  Bit Score: 37.91  E-value: 7.38e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKLSPQGKRM---FQKRWVKFDGLSISYYNNEKEMYSKG---IIPLSAISTVRVQGDNK----FEVVT-TQRTF 482
Cdd:cd13380     2 LKQGYLEKRSKDHSFFgseWQKRWCVLTNRAFYYYASEKSKQPKGgflIKGYSAQMAPHLRKDSRrdscFELTTpGRRTY 81
                          90       100
                  ....*....|....*....|..
gi 152012529  483 VFRVEKEEERNDWISILLNALK 504
Cdd:cd13380    82 QFTAASPSEARDWVDQIQFLLK 103
PH_Gab2_2 cd13384
Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily ...
414-496 7.80e-03

Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. Members here include insect, nematodes, and crustacean Gab2s. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241535  Cd Length: 115  Bit Score: 37.81  E-value: 7.80e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  414 VKSGWLDKlSPQGKRMFQKRWVK---------FDG-LSISYYNNEKEMYSKGIIPLSAISTV----RVQGDNK------F 473
Cdd:cd13384     4 VYEGWLTK-SPPEKRIWRAKWRRryfvlrqseIPGqYFLEYYTDRTCRKLKGSIDLDQCEQVdaglTFETKNKlkdqhiF 82
                          90       100
                  ....*....|....*....|...
gi 152012529  474 EVVTTQRTFVFRVEKEEERNDWI 496
Cdd:cd13384    83 DIRTPKRTYYLVADTEDEMNKWV 105
PH_CNK_insect-like cd13326
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
521-604 8.49e-03

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from insects, spiders, mollusks, and nematodes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270135  Cd Length: 91  Bit Score: 37.32  E-value: 8.49e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  521 CGYLELR-------GYKAKIFTVLSGNSVWLCKNEQDFKSGLGITIIPMNVANVKQVdRTVKQSFEIITPYRSFSFTAET 593
Cdd:cd13326     2 QGWLYQRrrkgkggGKWAKRWFVLKGSNLYGFRSQESTKADCVIFLPGFTVSPAPEV-KSRKYAFKVYHTGTVFYFAAES 80
                          90
                  ....*....|.
gi 152012529  594 EKEKQDWIEAV 604
Cdd:cd13326    81 QEDMKKWLDLL 91
DNA_pol_phi pfam04931
DNA polymerase phi; This family includes the fifth essential DNA polymerase in yeast EC:2.7.7. ...
1123-1230 9.11e-03

DNA polymerase phi; This family includes the fifth essential DNA polymerase in yeast EC:2.7.7.7. Pol5p is localized exclusively to the nucleolus and binds near or at the enhancer region of rRNA-encoding DNA repeating units.


Pssm-ID: 461488  Cd Length: 765  Bit Score: 40.68  E-value: 9.11e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 152012529  1123 LSDIDDALLTKELYPYwiSALDTQDDKERIKKYGAFIRSLPGVNRATLAAIIEHLYRVQKCSEINHMNAHNLA--LVFSS 1200
Cdd:pfam04931  458 LSSQPGVTADGELWPY--KVVQFIRTLLKSPKVVKLVIPLDEELREAWDKALKVLKKLSKKEKKADKAAQAQAfqLLLLL 535
                           90       100       110
                   ....*....|....*....|....*....|
gi 152012529  1201 CLFQTKGQTSEEVNVIEDLINNYVEIFEVK 1230
Cdd:pfam04931  536 VLLQLYNGDADAVSVLEDLQICYKKAFSKK 565
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH