NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1802476811|ref|YP_009725303|]
View 

nsp7 [Severe acute respiratory syndrome coronavirus 2]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
betaCoV_Nsp7 cd21827
betacoronavirus non-structural protein 7; This model represents the non-structural protein 7 ...
1-83 1.90e-37

betacoronavirus non-structural protein 7; This model represents the non-structural protein 7 (Nsp7) of betacoronaviruses including the highly pathogenic Severe acute respiratory syndrome-related coronavirus (SARS-CoV), SARS-CoV2 (also called 2019 novel CoV or 2019-nCoV), and Middle East respiratory syndrome-related (MERS) CoV. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. Upon processing of the Nsp7-10 region by protease M (Mpro), the released four small proteins Nsp7, Nsp8, Nsp9 and Nsp10 form functional complexes with CoV core enzymes and stimulate replication. Most importantly, a complex of Nsp7 with Nsp8 has been shown to activate and confer processivity to the RNA-synthesizing activity of Nsp12, the RNA-dependent RNA-polymerase (RdRp); in SARS-CoV, point mutations in the NSP7- or NSP8-coding region have been shown to delay virus growth. Nsp7 and Nsp8 cooperate in activating the primer-dependent activity of the Nsp12 RdRp such that the level of their association may constitute a limiting factor for obtaining a high RNA polymerase activity. The subsequent Nsp7/Nsp8/Nsp12 polymerase complex is then able to associate with an active bifunctional Nsp14, which includes N-terminal 3' to 5' exoribonuclease (ExoN) and C-terminal N7-guanine cap methyltransferase (N7-MTase) activities, thus representing a unique coronavirus Nsp assembly that incorporates RdRp, exoribonuclease, and N7-MTase activities. Interaction of Nsp7 with Nsp8 appears to be conserved across the coronavirus family, making these proteins interesting drug targets. Nsp7 has a 4-helical bundle conformation which is strongly affected by its interaction with Nsp8, especially where it concerns alpha-helix 4. SARS-CoV Nsp7 forms a 8:8 hexadecameric supercomplex with Nsp8 that adopts a hollow cylinder-like structure with a large central channel and positive electrostatic properties in the cylinder; the Nsp7/Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length.


:

Pssm-ID: 409253  Cd Length: 83  Bit Score: 120.24  E-value: 1.90e-37
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1802476811  1 SKMSDVKCTSVVLLSVLQQLRVESSSKLWAQCVQLHNDILLAKDTTEAFEKMVSLLSVLLSMQGAVDINKLCEEMLDNRA 80
Cdd:cd21827    1 SKLTDVKCTSVVLLSVLQQLHVESNSKLWAYCVKLHNDILAAKDPTEAFEKFVSLLSVLLSFPGAVDLDALCSELLDNPT 80

                 ...
gi 1802476811 81 TLQ 83
Cdd:cd21827   81 VLQ 83
 
Name Accession Description Interval E-value
betaCoV_Nsp7 cd21827
betacoronavirus non-structural protein 7; This model represents the non-structural protein 7 ...
1-83 1.90e-37

betacoronavirus non-structural protein 7; This model represents the non-structural protein 7 (Nsp7) of betacoronaviruses including the highly pathogenic Severe acute respiratory syndrome-related coronavirus (SARS-CoV), SARS-CoV2 (also called 2019 novel CoV or 2019-nCoV), and Middle East respiratory syndrome-related (MERS) CoV. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. Upon processing of the Nsp7-10 region by protease M (Mpro), the released four small proteins Nsp7, Nsp8, Nsp9 and Nsp10 form functional complexes with CoV core enzymes and stimulate replication. Most importantly, a complex of Nsp7 with Nsp8 has been shown to activate and confer processivity to the RNA-synthesizing activity of Nsp12, the RNA-dependent RNA-polymerase (RdRp); in SARS-CoV, point mutations in the NSP7- or NSP8-coding region have been shown to delay virus growth. Nsp7 and Nsp8 cooperate in activating the primer-dependent activity of the Nsp12 RdRp such that the level of their association may constitute a limiting factor for obtaining a high RNA polymerase activity. The subsequent Nsp7/Nsp8/Nsp12 polymerase complex is then able to associate with an active bifunctional Nsp14, which includes N-terminal 3' to 5' exoribonuclease (ExoN) and C-terminal N7-guanine cap methyltransferase (N7-MTase) activities, thus representing a unique coronavirus Nsp assembly that incorporates RdRp, exoribonuclease, and N7-MTase activities. Interaction of Nsp7 with Nsp8 appears to be conserved across the coronavirus family, making these proteins interesting drug targets. Nsp7 has a 4-helical bundle conformation which is strongly affected by its interaction with Nsp8, especially where it concerns alpha-helix 4. SARS-CoV Nsp7 forms a 8:8 hexadecameric supercomplex with Nsp8 that adopts a hollow cylinder-like structure with a large central channel and positive electrostatic properties in the cylinder; the Nsp7/Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length.


Pssm-ID: 409253  Cd Length: 83  Bit Score: 120.24  E-value: 1.90e-37
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1802476811  1 SKMSDVKCTSVVLLSVLQQLRVESSSKLWAQCVQLHNDILLAKDTTEAFEKMVSLLSVLLSMQGAVDINKLCEEMLDNRA 80
Cdd:cd21827    1 SKLTDVKCTSVVLLSVLQQLHVESNSKLWAYCVKLHNDILAAKDPTEAFEKFVSLLSVLLSFPGAVDLDALCSELLDNPT 80

                 ...
gi 1802476811 81 TLQ 83
Cdd:cd21827   81 VLQ 83
CoV_NSP7 pfam08716
Coronavirus replicase NSP7; NSP7 (non structural protein 7) has been implicated in viral RNA ...
1-83 9.01e-35

Coronavirus replicase NSP7; NSP7 (non structural protein 7) has been implicated in viral RNA replication and is predominantly alpha helical in structure. It forms a hexadecameric supercomplex with NSP8 that adopts a hollow cylinder-like structure. The dimensions of the central channel and positive electrostatic properties of the cylinder imply that it confers processivity on RNA-dependent RNA polymerase. NSP7 and NSP8 heterodimers play a role in the stabilization of NSP12 regions involved in RNA binding and are essential for a highly active NSP12 polymerase complex.


Pssm-ID: 285878  Cd Length: 83  Bit Score: 113.32  E-value: 9.01e-35
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1802476811  1 SKMSDVKCTSVVLLSVLQQLRVESSSKLWAQCVQLHNDILLAKDTTEAFEKMVSLLSVLLSMQGAVDINKLCEEMLDNRA 80
Cdd:pfam08716  1 SKLTDVKCTNVVLLGLLQKLHVESNSKLWAYCVELHNEILLCDDPTEAFEKLLALLAVLLSKHSAVDLSDLCDSYLENRT 80

                 ...
gi 1802476811 81 TLQ 83
Cdd:pfam08716 81 ILQ 83
 
Name Accession Description Interval E-value
betaCoV_Nsp7 cd21827
betacoronavirus non-structural protein 7; This model represents the non-structural protein 7 ...
1-83 1.90e-37

betacoronavirus non-structural protein 7; This model represents the non-structural protein 7 (Nsp7) of betacoronaviruses including the highly pathogenic Severe acute respiratory syndrome-related coronavirus (SARS-CoV), SARS-CoV2 (also called 2019 novel CoV or 2019-nCoV), and Middle East respiratory syndrome-related (MERS) CoV. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. Upon processing of the Nsp7-10 region by protease M (Mpro), the released four small proteins Nsp7, Nsp8, Nsp9 and Nsp10 form functional complexes with CoV core enzymes and stimulate replication. Most importantly, a complex of Nsp7 with Nsp8 has been shown to activate and confer processivity to the RNA-synthesizing activity of Nsp12, the RNA-dependent RNA-polymerase (RdRp); in SARS-CoV, point mutations in the NSP7- or NSP8-coding region have been shown to delay virus growth. Nsp7 and Nsp8 cooperate in activating the primer-dependent activity of the Nsp12 RdRp such that the level of their association may constitute a limiting factor for obtaining a high RNA polymerase activity. The subsequent Nsp7/Nsp8/Nsp12 polymerase complex is then able to associate with an active bifunctional Nsp14, which includes N-terminal 3' to 5' exoribonuclease (ExoN) and C-terminal N7-guanine cap methyltransferase (N7-MTase) activities, thus representing a unique coronavirus Nsp assembly that incorporates RdRp, exoribonuclease, and N7-MTase activities. Interaction of Nsp7 with Nsp8 appears to be conserved across the coronavirus family, making these proteins interesting drug targets. Nsp7 has a 4-helical bundle conformation which is strongly affected by its interaction with Nsp8, especially where it concerns alpha-helix 4. SARS-CoV Nsp7 forms a 8:8 hexadecameric supercomplex with Nsp8 that adopts a hollow cylinder-like structure with a large central channel and positive electrostatic properties in the cylinder; the Nsp7/Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length.


Pssm-ID: 409253  Cd Length: 83  Bit Score: 120.24  E-value: 1.90e-37
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1802476811  1 SKMSDVKCTSVVLLSVLQQLRVESSSKLWAQCVQLHNDILLAKDTTEAFEKMVSLLSVLLSMQGAVDINKLCEEMLDNRA 80
Cdd:cd21827    1 SKLTDVKCTSVVLLSVLQQLHVESNSKLWAYCVKLHNDILAAKDPTEAFEKFVSLLSVLLSFPGAVDLDALCSELLDNPT 80

                 ...
gi 1802476811 81 TLQ 83
Cdd:cd21827   81 VLQ 83
CoV_NSP7 pfam08716
Coronavirus replicase NSP7; NSP7 (non structural protein 7) has been implicated in viral RNA ...
1-83 9.01e-35

Coronavirus replicase NSP7; NSP7 (non structural protein 7) has been implicated in viral RNA replication and is predominantly alpha helical in structure. It forms a hexadecameric supercomplex with NSP8 that adopts a hollow cylinder-like structure. The dimensions of the central channel and positive electrostatic properties of the cylinder imply that it confers processivity on RNA-dependent RNA polymerase. NSP7 and NSP8 heterodimers play a role in the stabilization of NSP12 regions involved in RNA binding and are essential for a highly active NSP12 polymerase complex.


Pssm-ID: 285878  Cd Length: 83  Bit Score: 113.32  E-value: 9.01e-35
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1802476811  1 SKMSDVKCTSVVLLSVLQQLRVESSSKLWAQCVQLHNDILLAKDTTEAFEKMVSLLSVLLSMQGAVDINKLCEEMLDNRA 80
Cdd:pfam08716  1 SKLTDVKCTNVVLLGLLQKLHVESNSKLWAYCVELHNEILLCDDPTEAFEKLLALLAVLLSKHSAVDLSDLCDSYLENRT 80

                 ...
gi 1802476811 81 TLQ 83
Cdd:pfam08716 81 ILQ 83
CoV_Nsp7 cd21811
coronavirus non-structural protein 7; This model represents the non-structural protein 7 (Nsp7) ...
1-83 4.37e-33

coronavirus non-structural protein 7; This model represents the non-structural protein 7 (Nsp7) of alpha-, beta-, gamma- and deltacoronaviruses, including highly pathogenic betacoronaviruses such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV), SARS-CoV2 (also called 2019 novel CoV or 2019-nCoV), and Middle East respiratory syndrome-related (MERS) CoV. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. Upon processing of the Nsp7-10 region by protease M (Mpro), the released four small proteins Nsp7, Nsp8, Nsp9 and Nsp10 form functional complexes with CoV core enzymes and stimulate replication. Most importantly, a complex of Nsp7 with Nsp8 has been shown to activate and confer processivity to the RNA-synthesizing activity of Nsp12, the RNA-dependent RNA-polymerase (RdRp); in SARS-CoV, point mutations in the NSP7- or NSP8-coding region have been shown to delay virus growth. Nsp7 and Nsp8 cooperate in activating the primer-dependent activity of the Nsp12 RdRp such that the level of their association may constitute a limiting factor for obtaining a high RNA polymerase activity. The subsequent Nsp7/Nsp8/Nsp12 polymerase complex is then able to associate with an active bifunctional Nsp14, which includes N-terminal 3' to 5' exoribonuclease (ExoN) and C-terminal N7-guanine cap methyltransferase (N7-MTase) activities, thus representing a unique coronavirus Nsp assembly that incorporates RdRp, exoribonuclease, and N7-MTase activities. Interaction of Nsp7 with Nsp8 appears to be conserved across the coronavirus family, making these proteins interesting drug targets. Nsp7 has a 4-helical bundle conformation which is strongly affected by its interaction with Nsp8, especially where it concerns alpha-helix 4. SARS-CoV Nsp7 forms a 8:8 hexadecameric supercomplex with Nsp8 that adopts a hollow cylinder-like structure with a large central channel and positive electrostatic properties in the cylinder, while Feline infectious peritonitis virus Nsp7 forms a 2:1 heterotrimer with Nsp8. Regardless of their oligomeric structure, the Nsp7/Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length.


Pssm-ID: 409251  Cd Length: 83  Bit Score: 109.11  E-value: 4.37e-33
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1802476811  1 SKMSDVKCTSVVLLSVLQQLRVESSSKLWAQCVQLHNDILLAKDTTEAFEKMVSLLSVLLSMQGAVDINKLCEEMLDNRA 80
Cdd:cd21811    1 SKLTDVKCTAVVLLSLLQKLRVESNSKLWKQCVQLHNDILLAKDTTEVFEKLVSLLSVLLSMQGAVDLNRLCEEMLENRA 80

                 ...
gi 1802476811 81 TLQ 83
Cdd:cd21811   81 VLQ 83
alphaCoV_Nsp7 cd21826
alphacoronavirus non-structural protein 7; This model represents the non-structural protein 7 ...
1-83 9.24e-22

alphacoronavirus non-structural protein 7; This model represents the non-structural protein 7 (Nsp7) of alphacoronaviruses that include Feline infectious peritonitis virus (FCoV), Human coronavirus NL63 (HCoV-NL63), and Porcine transmissible gastroenteritis coronavirus (TGEV), among others. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. Upon processing of the Nsp7-10 region by protease M (Mpro), the released four small proteins Nsp7, Nsp8, Nsp9 and Nsp10 form functional complexes with CoV core enzymes and stimulate replication. Most importantly, a complex of Nsp7 with Nsp8 has been shown to activate and confer processivity to the RNA-synthesizing activity of Nsp12, the RNA-dependent RNA-polymerase (RdRp); in SARS-CoV, point mutations in the NSP7- or NSP8-coding region have been shown to delay virus growth. Nsp7 and Nsp8 cooperate in activating the primer-dependent activity of the Nsp12 RdRp such that the level of their association may constitute a limiting factor for obtaining a high RNA polymerase activity. The subsequent Nsp7/Nsp8/Nsp12 polymerase complex is then able to associate with an active bifunctional Nsp14, which includes N-terminal 3' to 5' exoribonuclease (ExoN) and C-terminal N7-guanine cap methyltransferase (N7-MTase) activities, thus representing a unique coronavirus Nsp assembly that incorporates RdRp, exoribonuclease, and N7-MTase activities. Interaction of Nsp7 with Nsp8 appears to be conserved across the coronavirus family, making these proteins interesting drug targets. Nsp7 has a 4-helical bundle conformation which is strongly affected by its interaction with Nsp8, especially where it concerns alpha-helix 4. FCoV Nsp7 forms a 2:1 heterotrimer with Nsp8; the Nsp7/Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length.


Pssm-ID: 409252  Cd Length: 83  Bit Score: 80.49  E-value: 9.24e-22
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1802476811  1 SKMSDVKCTSVVLLSVLQQLRVESSSKLWAQCVQLHNDILLAKDTTEAFEKMVSLLSVLLSMQGAVDINKLCEEMLDNRA 80
Cdd:cd21826    1 SKLTDIKCTNVVLLGCLSSMNVAANSKEWAYCVDLHNKINLCDDPEKAQEMLLALLAFFLSKQKDFGLDDLLDSYFDNNS 80

                 ...
gi 1802476811 81 TLQ 83
Cdd:cd21826   81 ILQ 83
gammaCoV_Nsp7 cd21828
gammacoronavirus non-structural protein 7; This model represents the non-structural protein 7 ...
1-83 3.43e-16

gammacoronavirus non-structural protein 7; This model represents the non-structural protein 7 (Nsp7) of gammacoronaviruses that include Avian infectious bronchitis virus (IBV) and Canada goose coronavirus (CGCoV), among others. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. Upon processing of the Nsp7-10 region by protease M (Mpro), the released four small proteins Nsp7, Nsp8, Nsp9 and Nsp10 form functional complexes with CoV core enzymes and stimulate replication. Most importantly, a complex of Nsp7 with Nsp8 has been shown to activate and confer processivity to the RNA-synthesizing activity of Nsp12, the RNA-dependent RNA-polymerase (RdRp); in SARS-CoV, point mutations in the NSP7- or NSP8-coding region have been shown to delay virus growth. Nsp7 and Nsp8 cooperate in activating the primer-dependent activity of the Nsp12 RdRp such that the level of their association may constitute a limiting factor for obtaining a high RNA polymerase activity. The subsequent Nsp7/Nsp8/Nsp12 polymerase complex is then able to associate with an active bifunctional Nsp14, which includes N-terminal 3' to 5' exoribonuclease (ExoN) and C-terminal N7-guanine cap methyltransferase (N7-MTase) activities, thus representing a unique coronavirus Nsp assembly that incorporates RdRp, exoribonuclease, and N7-MTase activities. Interaction of Nsp7 with Nsp8 appears to be conserved across the coronavirus family, making these proteins interesting drug targets. Nsp7 has a 4-helical bundle conformation which is strongly affected by its interaction with Nsp8, especially where it concerns alpha-helix 4. SARS-CoV Nsp7 forms a 8:8 hexadecameric supercomplex with Nsp8 that adopts a hollow cylinder-like structure with a large central channel and positive electrostatic properties in the cylinder, while Feline infectious peritonitis virus Nsp7 forms a 2:1 heterotrimer with Nsp8. Regardless of their oligomeric structure, the Nsp7/Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length.


Pssm-ID: 409254  Cd Length: 83  Bit Score: 66.35  E-value: 3.43e-16
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1802476811  1 SKMSDVKCTSVVLLSVLQQLRVESSSKLWAQCVQLHNDILLAKDTTEAFEKMVSLLSVLLSMQGAVDINKLCEEMLDNRA 80
Cdd:cd21828    1 SKLTDVKCTTVVLMQLLTKLNVEANSKMHKYLVELHNKILASDDVVECMDNLLGMLVTLLCIDSTIDLSEYCDDILKRST 80

                 ...
gi 1802476811 81 TLQ 83
Cdd:cd21828   81 VLQ 83
deltaCoV_Nsp7 cd21829
deltacoronavirus non-structural protein 7; This model represents the non-structural protein 7 ...
2-83 3.05e-03

deltacoronavirus non-structural protein 7; This model represents the non-structural protein 7 (Nsp7) of deltacoronaviruses that include White-eye coronavirus HKU16 and Quail coronavirus UAE-HKU30, among others. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. Upon processing of the Nsp7-10 region by protease M (Mpro), the released four small proteins Nsp7, Nsp8, Nsp9 and Nsp10 form functional complexes with CoV core enzymes and stimulate replication. Most importantly, a complex of Nsp7 with Nsp8 has been shown to activate and confer processivity to the RNA-synthesizing activity of Nsp12, the RNA-dependent RNA-polymerase (RdRp); in SARS-CoV, point mutations in the NSP7- or NSP8-coding region have been shown to delay virus growth. Nsp7 and Nsp8 cooperate in activating the primer-dependent activity of the Nsp12 RdRp such that the level of their association may constitute a limiting factor for obtaining a high RNA polymerase activity. The subsequent Nsp7/Nsp8/Nsp12 polymerase complex is then able to associate with an active bifunctional Nsp14, which includes N-terminal 3' to 5' exoribonuclease (ExoN) and C-terminal N7-guanine cap methyltransferase (N7-MTase) activities, thus representing a unique coronavirus Nsp assembly that incorporates RdRp, exoribonuclease, and N7-MTase activities. Interaction of Nsp7 with Nsp8 appears to be conserved across the coronavirus family, making these proteins interesting drug targets. Nsp7 has a 4-helical bundle conformation which is strongly affected by its interaction with Nsp8, especially where it concerns alpha-helix 4. SARS-CoV Nsp7 forms a 8:8 hexadecameric supercomplex with Nsp8 that adopts a hollow cylinder-like structure with a large central channel and positive electrostatic properties in the cylinder, while Feline infectious peritonitis virus Nsp7 forms a 2:1 heterotrimer with Nsp8. Regardless of their oligomeric structure, the Nsp7/Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length.


Pssm-ID: 409255  Cd Length: 96  Bit Score: 33.27  E-value: 3.05e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1802476811  2 KMSDVKCTSVVLLSVLQQLRVESSSKLWAQCVQLHNDILLAKDTTEAFEKMVSLLSVLL-------------SMQGAVDI 68
Cdd:cd21829    2 KTLDAKATAVVVANLLEKAGVTNKHEVCKKIVKLHNDTLKATTYEEAETSLVKLLAHIIeflptdqvdaylaDAVKVQHL 81
                         90
                 ....*....|....*
gi 1802476811 69 NKLCEEMLDNRATLQ 83
Cdd:cd21829   82 NTYFDSLLENKLVLQ 96
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH