NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|22261801|sp|P49257|]
View 

RecName: Full=Protein ERGIC-53; AltName: Full=ER-Golgi intermediate compartment 53 kDa protein; AltName: Full=Gp58; AltName: Full=Intracellular mannose-specific lectin MR60; AltName: Full=Lectin mannose-binding 1; Flags: Precursor

Protein Classification

lectin_ERGIC-53_ERGL domain-containing protein( domain architecture ID 10160947)

lectin_ERGIC-53_ERGL domain-containing protein

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
lectin_ERGIC-53_ERGL cd06902
ERGIC-53 and ERGL type 1 transmembrane proteins, N-terminal lectin domain; ERGIC-53 and ERGL, ...
44-268 4.77e-174

ERGIC-53 and ERGL type 1 transmembrane proteins, N-terminal lectin domain; ERGIC-53 and ERGL, N-terminal carbohydrate recognition domain. ERGIC-53 and ERGL are eukaryotic mannose-binding type 1 transmembrane proteins of the early secretory pathway that transport newly synthesized glycoproteins from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC). ERGIC-53 and ERGL have an N-terminal lectin-like carbohydrate recognition domain (represented by this alignment model) as well as a C-terminal transmembrane domain. ERGIC-53 functions as a 'cargo receptor' to facilitate the export of glycoproteins with different characteristics from the ER, while the ERGIC-53-like protein (ERGL) which may act as a regulator of ERGIC-53. In mammals, ERGIC-53 forms a complex with MCFD2 (multi-coagulation factor deficiency 2) which then recruits blood coagulation factors V and VIII. Mutations in either MCFD2 or ERGIC-53 cause a mild form of inherited hemophilia known as combined deficiency of factors V and VIII (F5F8D). In addition to the lectin and transmembrane domains, ERGIC-53 and ERGL have a short N-terminal cytoplasmic region of about 12 amino acids. ERGIC-53 forms disulphide-linked homodimers and homohexamers. ERGIC-53 and ERGL are sequence-similar to the lectins of leguminous plants. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely.


:

Pssm-ID: 173890  Cd Length: 225  Bit Score: 488.76  E-value: 4.77e-174
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801  44 RRFEYKYSFKGPHLVQSDGTVPFWAHAGNAIPSSDQIRVAPSLKSQRGSVWTKTKAAFENWEVEVTFRVTGRGRIGADGL 123
Cdd:cd06902   1 RRFEYKYSFKGPHLAQKDGTVPFWSHGGDAIASLEQVRLTPSLRSKKGSVWTKNPFSFENWEVEVTFRVTGRGRIGADGL 80
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801 124 AIWYAENQGLEGPVFGSADLWNGVGIFFDSFDNDGKKNNPAIVIIGNNGQIHYDHQNDGASQALASCQRDFRNKPYPVRA 203
Cdd:cd06902  81 AIWYTKERGEEGPVFGSSDKWNGVGIFFDSFDNDGKKNNPAILVVGNDGTKSYDHQNDGLTQALGSCLRDFRNKPYPVRA 160
                       170       180       190       200       210       220
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 22261801 204 KITYYQNTLTVMINNGFTPDKNDYEFCAKVENMIIPAQGHFGISAATGGLADDHDVLSFLTFQLT 268
Cdd:cd06902 161 KITYYQNVLTVSINNGFTPNKDDYELCTRVENMVLPPNGYFGVSAATGGLADDHDVLSFLTFSLT 225
 
Name Accession Description Interval E-value
lectin_ERGIC-53_ERGL cd06902
ERGIC-53 and ERGL type 1 transmembrane proteins, N-terminal lectin domain; ERGIC-53 and ERGL, ...
44-268 4.77e-174

ERGIC-53 and ERGL type 1 transmembrane proteins, N-terminal lectin domain; ERGIC-53 and ERGL, N-terminal carbohydrate recognition domain. ERGIC-53 and ERGL are eukaryotic mannose-binding type 1 transmembrane proteins of the early secretory pathway that transport newly synthesized glycoproteins from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC). ERGIC-53 and ERGL have an N-terminal lectin-like carbohydrate recognition domain (represented by this alignment model) as well as a C-terminal transmembrane domain. ERGIC-53 functions as a 'cargo receptor' to facilitate the export of glycoproteins with different characteristics from the ER, while the ERGIC-53-like protein (ERGL) which may act as a regulator of ERGIC-53. In mammals, ERGIC-53 forms a complex with MCFD2 (multi-coagulation factor deficiency 2) which then recruits blood coagulation factors V and VIII. Mutations in either MCFD2 or ERGIC-53 cause a mild form of inherited hemophilia known as combined deficiency of factors V and VIII (F5F8D). In addition to the lectin and transmembrane domains, ERGIC-53 and ERGL have a short N-terminal cytoplasmic region of about 12 amino acids. ERGIC-53 forms disulphide-linked homodimers and homohexamers. ERGIC-53 and ERGL are sequence-similar to the lectins of leguminous plants. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely.


Pssm-ID: 173890  Cd Length: 225  Bit Score: 488.76  E-value: 4.77e-174
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801  44 RRFEYKYSFKGPHLVQSDGTVPFWAHAGNAIPSSDQIRVAPSLKSQRGSVWTKTKAAFENWEVEVTFRVTGRGRIGADGL 123
Cdd:cd06902   1 RRFEYKYSFKGPHLAQKDGTVPFWSHGGDAIASLEQVRLTPSLRSKKGSVWTKNPFSFENWEVEVTFRVTGRGRIGADGL 80
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801 124 AIWYAENQGLEGPVFGSADLWNGVGIFFDSFDNDGKKNNPAIVIIGNNGQIHYDHQNDGASQALASCQRDFRNKPYPVRA 203
Cdd:cd06902  81 AIWYTKERGEEGPVFGSSDKWNGVGIFFDSFDNDGKKNNPAILVVGNDGTKSYDHQNDGLTQALGSCLRDFRNKPYPVRA 160
                       170       180       190       200       210       220
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 22261801 204 KITYYQNTLTVMINNGFTPDKNDYEFCAKVENMIIPAQGHFGISAATGGLADDHDVLSFLTFQLT 268
Cdd:cd06902 161 KITYYQNVLTVSINNGFTPNKDDYELCTRVENMVLPPNGYFGVSAATGGLADDHDVLSFLTFSLT 225
Lectin_leg-like pfam03388
Legume-like lectin family; Lectins are structurally diverse proteins that bind to specific ...
44-269 1.05e-127

Legume-like lectin family; Lectins are structurally diverse proteins that bind to specific carbohydrates. This family includes the VIP36 and ERGIC-53 lectins. These two proteins were the first recognized members of a family of animal lectins similar (19-24%) to the leguminous plant lectins. The alignment for this family aligns residues lying towards the N-terminus, where the similarity of VIP36 and ERGIC-53 is greatest. However, while Fiedler and Simons identified these proteins as a new family of animal lectins, our alignment also includes yeast sequences. ERGIC-53 is a 53kD protein, localized to the intermediate region between the endoplasmic reticulum and the Golgi apparatus (ER-Golgi-Intermediate Compartment, ERGIC). It was identified as a calcium-dependent, mannose-specific lectin. Its dysfunction has been associated with combined factors V and VIII deficiency OMIM:227300 OMIM:601567, suggesting an important and substrate-specific role for ERGIC-53 in the glycoprotein- secreting pathway.


Pssm-ID: 397453  Cd Length: 226  Bit Score: 371.00  E-value: 1.05e-127
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801    44 RRFEYKYSFKGPHLVQSDGTVPFWAHAGNAIPSSDQIRVAPSLKSQRGSVWTKTKAAFENWEVEVTFRVTGRGRIGADGL 123
Cdd:pfam03388   1 DRFKREHSLKKPYLGQGSGTIPNWEYGGSTILSSNYIRLTPDLQSQKGSLWTKQPTDLDSWEVEVTFRVHGSSRLFGDGL 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801   124 AIWYAENQGLEGPVFGSADLWNGVGIFFDSFDNDGKKNNPAIVIIGNNGQIHYDHQNDGASQALASCQRDFRNKPYPVRA 203
Cdd:pfam03388  81 AIWYTSERGIEGPVFGSKDKFNGLAIFLDTYDNHNGPLFPYISGMLNDGSKPYDHDKDGTHQELASCTADFRNKDYPTLI 160
                         170       180       190       200       210       220
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 22261801   204 KITYYQNTLTVMINNGFTPDKNDYEFCAKVENMIIPAQGHFGISAATGGLADDHDVLSFLTFQLTE 269
Cdd:pfam03388 161 RIKYDNNTLTVMIDNGLLENKVDWKLCFQVNNVILPTGYYFGVSAQTGDLSDNHDIFSILTFQLTN 226
 
Name Accession Description Interval E-value
lectin_ERGIC-53_ERGL cd06902
ERGIC-53 and ERGL type 1 transmembrane proteins, N-terminal lectin domain; ERGIC-53 and ERGL, ...
44-268 4.77e-174

ERGIC-53 and ERGL type 1 transmembrane proteins, N-terminal lectin domain; ERGIC-53 and ERGL, N-terminal carbohydrate recognition domain. ERGIC-53 and ERGL are eukaryotic mannose-binding type 1 transmembrane proteins of the early secretory pathway that transport newly synthesized glycoproteins from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC). ERGIC-53 and ERGL have an N-terminal lectin-like carbohydrate recognition domain (represented by this alignment model) as well as a C-terminal transmembrane domain. ERGIC-53 functions as a 'cargo receptor' to facilitate the export of glycoproteins with different characteristics from the ER, while the ERGIC-53-like protein (ERGL) which may act as a regulator of ERGIC-53. In mammals, ERGIC-53 forms a complex with MCFD2 (multi-coagulation factor deficiency 2) which then recruits blood coagulation factors V and VIII. Mutations in either MCFD2 or ERGIC-53 cause a mild form of inherited hemophilia known as combined deficiency of factors V and VIII (F5F8D). In addition to the lectin and transmembrane domains, ERGIC-53 and ERGL have a short N-terminal cytoplasmic region of about 12 amino acids. ERGIC-53 forms disulphide-linked homodimers and homohexamers. ERGIC-53 and ERGL are sequence-similar to the lectins of leguminous plants. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely.


Pssm-ID: 173890  Cd Length: 225  Bit Score: 488.76  E-value: 4.77e-174
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801  44 RRFEYKYSFKGPHLVQSDGTVPFWAHAGNAIPSSDQIRVAPSLKSQRGSVWTKTKAAFENWEVEVTFRVTGRGRIGADGL 123
Cdd:cd06902   1 RRFEYKYSFKGPHLAQKDGTVPFWSHGGDAIASLEQVRLTPSLRSKKGSVWTKNPFSFENWEVEVTFRVTGRGRIGADGL 80
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801 124 AIWYAENQGLEGPVFGSADLWNGVGIFFDSFDNDGKKNNPAIVIIGNNGQIHYDHQNDGASQALASCQRDFRNKPYPVRA 203
Cdd:cd06902  81 AIWYTKERGEEGPVFGSSDKWNGVGIFFDSFDNDGKKNNPAILVVGNDGTKSYDHQNDGLTQALGSCLRDFRNKPYPVRA 160
                       170       180       190       200       210       220
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 22261801 204 KITYYQNTLTVMINNGFTPDKNDYEFCAKVENMIIPAQGHFGISAATGGLADDHDVLSFLTFQLT 268
Cdd:cd06902 161 KITYYQNVLTVSINNGFTPNKDDYELCTRVENMVLPPNGYFGVSAATGGLADDHDVLSFLTFSLT 225
Lectin_leg-like pfam03388
Legume-like lectin family; Lectins are structurally diverse proteins that bind to specific ...
44-269 1.05e-127

Legume-like lectin family; Lectins are structurally diverse proteins that bind to specific carbohydrates. This family includes the VIP36 and ERGIC-53 lectins. These two proteins were the first recognized members of a family of animal lectins similar (19-24%) to the leguminous plant lectins. The alignment for this family aligns residues lying towards the N-terminus, where the similarity of VIP36 and ERGIC-53 is greatest. However, while Fiedler and Simons identified these proteins as a new family of animal lectins, our alignment also includes yeast sequences. ERGIC-53 is a 53kD protein, localized to the intermediate region between the endoplasmic reticulum and the Golgi apparatus (ER-Golgi-Intermediate Compartment, ERGIC). It was identified as a calcium-dependent, mannose-specific lectin. Its dysfunction has been associated with combined factors V and VIII deficiency OMIM:227300 OMIM:601567, suggesting an important and substrate-specific role for ERGIC-53 in the glycoprotein- secreting pathway.


Pssm-ID: 397453  Cd Length: 226  Bit Score: 371.00  E-value: 1.05e-127
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801    44 RRFEYKYSFKGPHLVQSDGTVPFWAHAGNAIPSSDQIRVAPSLKSQRGSVWTKTKAAFENWEVEVTFRVTGRGRIGADGL 123
Cdd:pfam03388   1 DRFKREHSLKKPYLGQGSGTIPNWEYGGSTILSSNYIRLTPDLQSQKGSLWTKQPTDLDSWEVEVTFRVHGSSRLFGDGL 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801   124 AIWYAENQGLEGPVFGSADLWNGVGIFFDSFDNDGKKNNPAIVIIGNNGQIHYDHQNDGASQALASCQRDFRNKPYPVRA 203
Cdd:pfam03388  81 AIWYTSERGIEGPVFGSKDKFNGLAIFLDTYDNHNGPLFPYISGMLNDGSKPYDHDKDGTHQELASCTADFRNKDYPTLI 160
                         170       180       190       200       210       220
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 22261801   204 KITYYQNTLTVMINNGFTPDKNDYEFCAKVENMIIPAQGHFGISAATGGLADDHDVLSFLTFQLTE 269
Cdd:pfam03388 161 RIKYDNNTLTVMIDNGLLENKVDWKLCFQVNNVILPTGYYFGVSAQTGDLSDNHDIFSILTFQLTN 226
lectin_leg-like cd07308
legume-like lectins: ERGIC-53, ERGL, VIP36, VIPL, EMP46, and EMP47; The legume-like (leg-like) ...
46-267 1.53e-77

legume-like lectins: ERGIC-53, ERGL, VIP36, VIPL, EMP46, and EMP47; The legume-like (leg-like) lectins are eukaryotic intracellular sugar transport proteins with a carbohydrate recognition domain similar to that of the legume lectins. This domain binds high-mannose-type oligosaccharides for transport from the endoplasmic reticulum to the Golgi complex. These leg-like lectins include ERGIC-53, ERGL, VIP36, VIPL, EMP46, EMP47, and the UIP5 (ULP1-interacting protein 5) precursor protein. Leg-like lectins have different intracellular distributions and dynamics in the endoplasmic reticulum-Golgi system of the secretory pathway and interact with N-glycans of glycoproteins in a calcium-dependent manner, suggesting a role in glycoprotein sorting and trafficking. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely.


Pssm-ID: 173892  Cd Length: 218  Bit Score: 242.26  E-value: 1.53e-77
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801  46 FEYKYSFKGPHLVQSDGTVPFWAHAGNAIPSSDQIRVAPSLKSQRGSVWTKTKAAFENWEVEVTFRVTGRGRIGADGLAI 125
Cdd:cd07308   1 FISEHSLSPPFLDDNDGEIGNWTVGGSTVITKNYIRLTPDVPSQSGSLWSRVPIPAKDFEIEVEFSIHGGSGLGGDGFAF 80
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801 126 WYAENQGLEGPVFGSADLWNGVGIFFDSFDNDGkKNNPAIVIIGNNGQIHYDHQNDGASQALASCQRDFRNKPYPVRAKI 205
Cdd:cd07308  81 WYTEEPGSDGPLFGGPDKFKGLAIFFDTYDNDG-KGFPSISVFLNDGTKSYDYETDGEKLELASCSLKFRNSNAPTTLRI 159
                       170       180       190       200       210       220
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 22261801 206 TYYQNTLTVMINNgftPDKNDYEFCAKVENMIIPAQGHFGISAATGGLADDHDVLSFLTFQL 267
Cdd:cd07308 160 SYLNNTLKVDITY---SEGNNWKECFTVEDVILPSQGYFGFSAQTGDLSDNHDILSVHTYEL 218
lectin_VIP36_VIPL cd06901
VIP36 and VIPL type 1 transmembrane proteins, lectin domain; The vesicular integral protein of ...
63-267 5.85e-59

VIP36 and VIPL type 1 transmembrane proteins, lectin domain; The vesicular integral protein of 36 kDa (VIP36) is a type 1 transmembrane protein of the mammalian early secretory pathway that acts as a cargo receptor transporting high mannose type glycoproteins between the Golgi and the endoplasmic reticulum (ER). Lectins of the early secretory pathway are involved in the selective transport of newly synthesized glycoproteins from the ER to the ER-Golgi intermediate compartment (ERGIC). The most prominent cycling lectin is the mannose-binding type1 membrane protein ERGIC-53, which functions as a cargo receptor to facilitate export of glycoproteins from the ER. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely.


Pssm-ID: 173889  Cd Length: 248  Bit Score: 195.31  E-value: 5.85e-59
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801  63 TVPFWAHAGNAIPSSDQIRVAPSLKSQRGSVWTKTKAAFENWEVEVTFRVTGRGR-IGADGLAIWYAENQGLEGPVFGSA 141
Cdd:cd06901  18 SMPLWDFLGSTMVTSQYIRLTPDHQSKQGSIWNRVPCYLRDWEMHVHFKVHGSGKnLFGDGFAIWYTKERMQPGPVFGSK 97
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801 142 DLWNGVGIFFDSFDNDGKKNN---PAIVIIGNNGQIHYDHQNDGASQALASCQRDFRNKPYPVRAKITYYQNTLTVMINn 218
Cdd:cd06901  98 DNFHGLAIFFDTYSNQNGEHEhvhPYISAMVNNGSLSYDHDRDGTHTELAGCSAPFRNKDHDTFVAIRYSKGRLTVMTD- 176
                       170       180       190       200
                ....*....|....*....|....*....|....*....|....*....
gi 22261801 219 gfTPDKNDYEFCAKVENMIIPAQGHFGISAATGGLADDHDVLSFLTFQL 267
Cdd:cd06901 177 --IDGKNEWKECFDVTGVRLPTGYYFGASAATGDLSDNHDIISMKLYEL 223
lectin_L-type cd01951
legume lectins; The L-type (legume-type) lectins are a highly diverse family of carbohydrate ...
59-262 2.34e-26

legume lectins; The L-type (legume-type) lectins are a highly diverse family of carbohydrate binding proteins that generally display no enzymatic activity toward the sugars they bind. This family includes arcelin, concanavalinA, the lectin-like receptor kinases, the ERGIC-53/VIP36/EMP46 type1 transmembrane proteins, and an alpha-amylase inhibitor. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely.


Pssm-ID: 173886 [Multi-domain]  Cd Length: 223  Bit Score: 106.74  E-value: 2.34e-26
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801  59 QSDGTVPFWAHAGNA--IPSSDQIRVAPSLKSQRGSVWTKTK-AAFENWEVEVTFRVTGRGRIGADGLAIWYAEN----- 130
Cdd:cd01951   8 FSNNNQSNWQLNGSAtlTTDSGVLRLTPDTGNQAGSAWYKTPiDLSKDFTTTFKFYLGTKGTNGADGIAFVLQNDpagal 87
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801 131 -QGLEGPVFGSADLWNGVGIFFDSFDNDGKK--NNPAIVIIGNNGQIHYDHQNdgasqALASCQRDFRNKPYPVR-AKIT 206
Cdd:cd01951  88 gGGGGGGGLGYGGIGNSVAVEFDTYKNDDNNdpNGNHISIDVNGNGNNTALAT-----SLGSASLPNGTGLGNEHtVRIT 162
                       170       180       190       200       210       220
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 22261801 207 Y--YQNTLTVMINNGFTPDKNDYefcaKVENMIIPA---QGHFGISAATGGLADDHDVLSF 262
Cdd:cd01951 163 YdpTTNTLTVYLDNGSTLTSLDI----TIPVDLIQLgptKAYFGFTASTGGLTNLHDILNW 219
lectin_EMP46_EMP47 cd06903
EMP46 and EMP47 type 1 transmembrane proteins, N-terminal lectin domain; EMP46 and EMP47, ...
50-265 4.72e-24

EMP46 and EMP47 type 1 transmembrane proteins, N-terminal lectin domain; EMP46 and EMP47, N-terminal carbohydrate recognition domain. EMP46 and EMP47 are fungal type-I transmembrane proteins that cycle between the endoplasmic reticulum and the golgi apparatus and are thought to function as cargo receptors that transport newly synthesized glycoproteins. EMP47 is a receptor for EMP46 responsible for the selective transport of EMP46 by forming hetero-oligomerization between the two proteins. EMP46 and EMP47 have an N-terminal lectin-like carbohydrate recognition domain (represented by this alignment model) as well as a C-terminal transmembrane domain. EMP46 and EMP47 are 45% sequence-identical to one another and have sequence homology to a class of intracellular lectins defined by ERGIC-53 and VIP36. L-type lectins have a dome-shaped beta-barrel carbohydrate recognition domain with a curved seven-stranded beta-sheet referred to as the "front face" and a flat six-stranded beta-sheet referred to as the "back face". This domain homodimerizes so that adjacent back sheets form a contiguous 12-stranded sheet and homotetramers occur by a back-to-back association of these homodimers. Though L-type lectins exhibit both sequence and structural similarity to one another, their carbohydrate binding specificities differ widely.


Pssm-ID: 173891  Cd Length: 215  Bit Score: 100.06  E-value: 4.72e-24
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801  50 YSFkgPHLVQ---SDGTVPFWAHAGNAIPSSDQIRVAPSlKSQRGSVWTKTKAAFEN-WEVEVTFRVTGRGRIGADGLAI 125
Cdd:cd06903   5 LSL--PNLLKispNGKLIPNWQTSGNPKLESGRIILTPP-GNQRGSLWLKKPLSLKDeWTIEWTFRSTGPEGRSGGGLNF 81
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801 126 WYA-ENQGLEGP-VFGSADLWNGVGIFFDSFDNDGkknnPAIVIIGNNGQIHYDHQNDgASQALASCQRDFRNKPYPVRA 203
Cdd:cd06903  82 WLVkDGNADVGTsSIYGPSKFDGLQLLIDNNGGSG----GSLRGFLNDGSKDYKNEDV-DSLAFGSCLFAYQDSGVPSTI 156
                       170       180       190       200       210       220
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 22261801 204 KITY--YQNTLTVMINNgftpdkndyEFCAKVENMIIPAQGH-FGISAATGGLADDHDVLSFLTF 265
Cdd:cd06903 157 RLSYdaLNSLFKVQVDN---------RLCFQTDKVQLPQGGYrFGITAANADNPESFEILKLKVW 212
Bact_lectin pfam18483
Bacterial lectin; This entry primarily matches to legume-like lectin domains found in ...
71-259 1.45e-07

Bacterial lectin; This entry primarily matches to legume-like lectin domains found in prokaryotes.


Pssm-ID: 465784  Cd Length: 211  Bit Score: 52.06  E-value: 1.45e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801    71 GNAIPSSD--QIRVAPSLKSQRGSVWTKTKAAF-ENWevEVTFRV----TGRGRIGADGLAIWYAENQ--GLEGPVFGSA 141
Cdd:pfam18483  14 GDATKQNYngIVTLTPDQNGQSGAVTLKNKIDLnKDF--TLKGAVnlgnKQSNTGGADGIGFVFHPGGgiGTSGGGLGIG 91
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 22261801   142 DLWNGVGIFFDSFDNDGKKNNPAIVIIGNNGQ-----IHYDHQN----------DGASQALASCQRDFRNKPYpvraKIT 206
Cdd:pfam18483  92 GLPNAFGFKFDTYYNSGDSDPNADPSQGAGGDpygafVTTDSNGnltdvgsdsqTGSTQALDSSLEDGAFHPI----TIS 167
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|...
gi 22261801   207 YYQNTLTVMINngftpdkndYEFCAKVENMIipaqgHFGISAATGGLADDHDV 259
Cdd:pfam18483 168 YDANTKTLTVT---------YDGNDSSSTKV-----YFGFAASTGGSTNLQQF 206
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH