NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|45647651|gb|AAS74423|]
View 

5-HT1B, partial [Drosophila melanogaster]

Protein Classification

G protein-coupled receptor family protein( domain architecture ID 705710)

G protein-coupled receptor family protein is a seven-transmembrane G protein-coupled receptor (7TM-GPCR) family protein which typically transmits an extracellular signal into the cell by the conformational rearrangement of the 7TM helices and by the subsequent binding and activation of an intracellular heterotrimeric G protein; GPCR ligands include light-sensitive compounds, odors, pheromones, hormones, and neurotransmitters

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
7tm_GPCRs super family cl28897
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ...
228-302 2.93e-43

seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections.


The actual alignment was detected with superfamily member cd15064:

Pssm-ID: 475119 [Multi-domain]  Cd Length: 258  Bit Score: 149.40  E-value: 2.93e-43
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 228 EAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15064 184 AAARERKAAKTLGIILGAFIVCWLPFFLVALIVPLCSHCWIPLALKSFFLWLGYFNSLINPLIYTFFNKDFRKAF 258
 
Name Accession Description Interval E-value
7tmA_5-HT1_5_7 cd15064
serotonin receptor subtypes 1, 5 and 7, member of the class A family of seven-transmembrane G ...
228-302 2.93e-43

serotonin receptor subtypes 1, 5 and 7, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes serotonin receptor subtypes 1, 5, and 7 that are activated by the neurotransmitter serotonin. The 5-HT1 and 5-HT5 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family. The 5-HT1 receptor subfamily includes 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as 5-HT2C receptor. The 5-HT5A and 5-HT5B receptors have been cloned from rat and mouse, but only the 5-HT5A isoform has been identified in human because of the presence of premature stop codons in the human 5-HT5B gene, which prevents a functional receptor from being expressed. The 5-HT7 receptor is coupled to Gs, which positively stimulates adenylate cyclase activity, leading to increased intracellular cAMP formation and calcium influx. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression.


Pssm-ID: 320192 [Multi-domain]  Cd Length: 258  Bit Score: 149.40  E-value: 2.93e-43
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 228 EAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15064 184 AAARERKAAKTLGIILGAFIVCWLPFFLVALIVPLCSHCWIPLALKSFFLWLGYFNSLINPLIYTFFNKDFRKAF 258
7tm_1 pfam00001
7 transmembrane receptor (rhodopsin family); This family contains, amongst other ...
222-291 1.71e-19

7 transmembrane receptor (rhodopsin family); This family contains, amongst other G-protein-coupled receptors (GCPRs), members of the opsin family, which have been considered to be typical members of the rhodopsin superfamily. They share several motifs, mainly the seven transmembrane helices, GCPRs of the rhodopsin superfamily. All opsins bind a chromophore, such as 11-cis-retinal. The function of most opsins other than the photoisomerases is split into two steps: light absorption and G-protein activation. Photoisomerases, on the other hand, are not coupled to G-proteins - they are thought to generate and supply the chromophore that is used by visual opsins.


Pssm-ID: 459624 [Multi-domain]  Cd Length: 256  Bit Score: 85.81  E-value: 1.71e-19
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651   222 KRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAV---ASLFLWLGYFNSTLNPVIY 291
Cdd:pfam00001 184 KQKSSERTQRRRKALKTLAVVVVVFILCWLPYHIVNLLDSLALDCELSRLLdkaLSVTLWLAYVNSCLNPIIY 256
 
Name Accession Description Interval E-value
7tmA_5-HT1_5_7 cd15064
serotonin receptor subtypes 1, 5 and 7, member of the class A family of seven-transmembrane G ...
228-302 2.93e-43

serotonin receptor subtypes 1, 5 and 7, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes serotonin receptor subtypes 1, 5, and 7 that are activated by the neurotransmitter serotonin. The 5-HT1 and 5-HT5 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family. The 5-HT1 receptor subfamily includes 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as 5-HT2C receptor. The 5-HT5A and 5-HT5B receptors have been cloned from rat and mouse, but only the 5-HT5A isoform has been identified in human because of the presence of premature stop codons in the human 5-HT5B gene, which prevents a functional receptor from being expressed. The 5-HT7 receptor is coupled to Gs, which positively stimulates adenylate cyclase activity, leading to increased intracellular cAMP formation and calcium influx. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression.


Pssm-ID: 320192 [Multi-domain]  Cd Length: 258  Bit Score: 149.40  E-value: 2.93e-43
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 228 EAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15064 184 AAARERKAAKTLGIILGAFIVCWLPFFLVALIVPLCSHCWIPLALKSFFLWLGYFNSLINPLIYTFFNKDFRKAF 258
7tmA_5-HT1A_invertebrates cd15331
serotonin receptor subtype 1A from invertebrates, member of the class A family of ...
229-302 2.04e-41

serotonin receptor subtype 1A from invertebrates, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT1 receptors, one of 14 mammalian 5-HT receptors, is a member of the class A of GPCRs and is activated by the endogenous neurotransmitter and peripheral signal mediator serotonin (5-hydroxytryptamine, 5-HT). The 5-HT1 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. The 5-HT1 receptor subfamily includes 5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as the 5-HT2C receptor. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression.


Pssm-ID: 320454 [Multi-domain]  Cd Length: 261  Bit Score: 144.80  E-value: 2.04e-41
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15331 188 AKRERKAARTLAIITGAFVVCWLPFFLVALVMPFCGAWQISRFLESFFLWLGYFNSLLNPIIYTIFSPDFRGAF 261
7tmA_amine_R-like cd14967
amine receptors and similar proteins, member of the class A family of seven-transmembrane G ...
229-302 1.80e-35

amine receptors and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; Amine receptors of the class A family of GPCRs include adrenoceptors, 5-HT (serotonin) receptors, muscarinic cholinergic receptors, dopamine receptors, histamine receptors, and trace amine receptors. The receptors of amine subfamily are major therapeutic targets for the treatment of neurological disorders and psychiatric diseases. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320098 [Multi-domain]  Cd Length: 259  Bit Score: 128.83  E-value: 1.80e-35
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd14967 186 ARRELKAAKTLAIIVGAFLLCWLPFFIIYLVSAFCPPDCVPPILYAVFFWLGYLNSALNPIIYALFNRDFRRAF 259
7tmA_tyramine_octopamine_R-like cd15060
tyramine/octopamine receptor-like, member of the class A family of seven-transmembrane G ...
231-302 4.48e-32

tyramine/octopamine receptor-like, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes tyramine/octopamine receptors and similar proteins found in insects and other invertebrates. Both octopamine and tyramine mediate their actions via G protein-coupled receptors (GPCRs) and are the invertebrate equivalent of vertebrate adrenergic neurotransmitters. In Drosophila, octopamine is involved in ovulation by mediating an egg release from the ovary, while a physiological role for tyramine in this process is not fully understood. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320188 [Multi-domain]  Cd Length: 260  Bit Score: 120.23  E-value: 4.48e-32
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15060 189 KERRAARTLGIIMGVFVVCWLPFFLMYVILPFCETCSPSAKVVNFITWLGYVNSALNPVIYTIFNLDFRRAF 260
7tmA_5-HT7 cd15329
serotonin receptor subtype 7, member of the class A family of seven-transmembrane G ...
227-302 5.11e-32

serotonin receptor subtype 7, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT7 receptor, one of 14 mammalian serotonin receptors, is a member of the class A of GPCRs and is activated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). 5-HT7 receptor mainly couples to Gs protein, which positively stimulates adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. 5-HT7 receptor is expressed in various human tissues, mainly in the brain, the lower gastrointestinal tract and in vital blood vessels including the coronary artery. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression.


Pssm-ID: 320452 [Multi-domain]  Cd Length: 260  Bit Score: 120.07  E-value: 5.11e-32
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 227 LEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCK---ECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15329 182 RAAKSERKAIKTLGIIMGAFTLCWLPFFILALLRPFLKpikCSCIPLWLSRLFLWLGYANSFLNPIIYAKFNREFRTPF 260
7tmA_D2-like_dopamine_R cd15053
D2-like dopamine receptors, member of the class A family of seven-transmembrane G ...
230-302 5.37e-32

D2-like dopamine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. The D1-like family receptors are coupled to G proteins of the G(s) family, which activate adenylate cyclase, causing cAMP formation and activation of protein kinase A. In contrast, activation of D2-like family receptors is linked to G proteins of the G(i) family, which inhibit adenylate cyclase. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease.


Pssm-ID: 320181 [Multi-domain]  Cd Length: 263  Bit Score: 119.76  E-value: 5.37e-32
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLC-----KECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15053 186 RREKKATKTLAIVLGVFLFCWLPFFTLNILNAICpklqnQSCHVGPALFSLTTWLGYVNSFLNPIIYTIFNIEFRKAF 263
7tmA_DmOct-betaAR-like cd15066
Drosophila melanogaster beta-adrenergic receptor-like octopamine receptors and similar ...
224-302 3.08e-31

Drosophila melanogaster beta-adrenergic receptor-like octopamine receptors and similar receptors in bilateria; member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes Drosophila beta-adrenergic-like octopamine receptors and similar proteins. The biogenic amine octopamine is the invertebrate equivalent of vertebrate adrenergic neurotransmitters and exerts its effects through different G protein-coupled receptor types. Insect octopamine receptors are involved in the modulation of carbohydrate metabolism, muscular tension, cognition and memory. The activation of octopamine receptors mediating these actions leads to an increase in adenylate cyclase activity, thereby increasing cAMP levels. In Drosophila melanogaster, three subgroups have been classified on the basis of their structural homology and functional equivalents with vertebrate beta-adrenergic receptors: DmOctBeta1R, DmOctBeta2R, and DmOctBeta3R.


Pssm-ID: 320194 [Multi-domain]  Cd Length: 265  Bit Score: 117.86  E-value: 3.08e-31
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 224 RQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCK-ECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15066 186 RIYLEAKREHKAAKTLGIIMGAFILCWLPFFLWYVTTTLCGdACPYPPILVSILFWIGYFNSTLNPLIYAYFNRDFREAF 265
7tmA_alpha2_AR cd15059
alpha-2 adrenergic receptors, member of the class A family of seven-transmembrane G ...
230-302 3.66e-28

alpha-2 adrenergic receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320187 [Multi-domain]  Cd Length: 261  Bit Score: 109.74  E-value: 3.66e-28
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15059 189 RKERRFTLVLGVVMGAFVLCWLPFFFTYPLVVVCKTCGVPELLFKFFFWLGYCNSALNPVIYTIFNKDFRRAF 261
7tmA_5-HT2 cd15052
serotonin receptor subtype 2, member of the class A family of seven-transmembrane G ...
231-302 7.11e-28

serotonin receptor subtype 2, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320180 [Multi-domain]  Cd Length: 262  Bit Score: 108.94  E-value: 7.11e-28
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECE--IHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15052 189 NEQKASKVLGIVFAVFVICWCPFFITNILTGLCEECNcrISPWLLSVFVWLGYVSSTINPIIYTIFNKTFRRAF 262
7tmA_5-HT1F cd15334
serotonin receptor subtype 1F, member of the class A family of seven-transmembrane G ...
229-303 2.04e-27

serotonin receptor subtype 1F, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT1 receptors, one of 14 mammalian 5-HT receptors, is a member of the class A of GPCRs and is activated by the endogenous neurotransmitter and peripheral signal mediator serotonin (5-hydroxytryptamine, 5-HT). The 5-HT1 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. The 5-HT1 receptor subfamily includes 5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as the 5-HT2C receptor. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression.


Pssm-ID: 320456 [Multi-domain]  Cd Length: 259  Bit Score: 107.73  E-value: 2.04e-27
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAFK 303
Cdd:cd15334 185 ATRERKAATTLGLILGAFVICWLPFFVKEVIVNTCDSCYISEEMSNFLTWLGYINSLINPLIYTIFNEDFKKAFQ 259
7tmA_Ap5-HTB1-like cd15065
serotonin receptor subtypes B1 and B2 from Aplysia californica and similar proteins; member of ...
231-302 3.24e-27

serotonin receptor subtypes B1 and B2 from Aplysia californica and similar proteins; member of the class A family of seven-transmembrane G protein-coupled receptors; This subfamily includes Aplysia californica serotonin receptors Ap5-HTB1 and Ap5-HTB2, and similar proteins from bilateria including insects, mollusks, annelids, and worms. Ap5-HTB1 is one of the several different receptors for 5-hydroxytryptamine (5HT, serotonin). In Aplysia, serotonin plays important roles in a variety of behavioral and physiological processes mediated by the central nervous system. These include circadian clock, feeding, locomotor movement, cognition and memory, synaptic growth and synaptic plasticity. Both Ap5-HTB1 and Ap5-HTB2 receptors are coupled to G-proteins that stimulate phospholipase C, leading to the activation of phosphoinositide metabolism. Ap5-HTB1 is expressed in the reproductive system, whereas Ap5-HTB2 is expressed in the central nervous system.


Pssm-ID: 320193 [Multi-domain]  Cd Length: 300  Bit Score: 108.21  E-value: 3.24e-27
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15065 230 SDHKAAVTLGIIMGVFLICWLPFFIINIIAAFCKTC-IPPKCFKILTWLGYFNSCLNPIIYSIFNSEFRRAF 300
7tmA_tyramine_R-like cd15061
tyramine receptors and similar proteins, member of the class A family of seven-transmembrane G ...
229-302 9.37e-27

tyramine receptors and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes tyramine-specific receptors and similar proteins found in insects and other invertebrates. These tyramine receptors form a distinct receptor family that is phylogenetically different from the other tyramine/octopamine receptors which also found in invertebrates. Both octopamine and tyramine mediate their actions via G protein-coupled receptors (GPCRs) and are the invertebrate equivalent of vertebrate adrenergic neurotransmitters. In Drosophila, octopamine is involved in ovulation by mediating an egg release from the ovary, while a physiological role for tyramine in this process is not fully understood. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320189 [Multi-domain]  Cd Length: 256  Bit Score: 105.91  E-value: 9.37e-27
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCkECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15061 184 IAKERKTAKTLAIVVGCFIVCWLPFFIMYLIEPFC-DCQFSEALSTAFTWLGYFNSVINPFIYAFYNKDFRRAF 256
7tmA_D3_dopamine_R cd15310
D3 subtype of the D2-like family of dopamine receptors, member of the class A family of ...
231-302 1.26e-26

D3 subtype of the D2-like family of dopamine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. Activation of D2-like family receptors is linked to G proteins of the G(i) family. This leads to a decrease in adenylate cyclase activity, thereby decreasing cAMP levels. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease.


Pssm-ID: 320436 [Multi-domain]  Cd Length: 259  Bit Score: 105.44  E-value: 1.26e-26
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15310 188 REKKATQMLAIVLGAFIVCWLPFFLTHILNTHCQACHVPPELYSATTWLGYVNSALNPVIYTTFNIEFRRAF 259
7tmA_5-HT1B_1D cd15333
serotonin receptor subtypes 1B and 1D, member of the class A family of seven-transmembrane G ...
224-302 1.40e-26

serotonin receptor subtypes 1B and 1D, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT1 receptors, one of 14 mammalian 5-HT receptors, is a member of the class A of GPCRs and is activated by the endogenous neurotransmitter and peripheral signal mediator serotonin (5-hydroxytryptamine, 5-HT). The 5-HT1 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. The 5-HT1 receptor subfamily includes 5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as the 5-HT2C receptor. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression.


Pssm-ID: 320455 [Multi-domain]  Cd Length: 265  Bit Score: 105.65  E-value: 1.40e-26
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 224 RQLLEAK-RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKE-CEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15333 185 RIYVEARaRERKATKTLGIILGAFIVCWLPFFIISLVLPICKDaCWFHLAIFDFFTWLGYLNSLINPIIYTMSNEDFKQA 264

                .
gi 45647651 302 F 302
Cdd:cd15333 265 F 265
7tmA_TAARs cd15055
trace amine-associated receptors, member of the class A family of seven-transmembrane G ...
230-302 1.44e-26

trace amine-associated receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The trace amine-associated receptors (TAARs) are a distinct subfamily within the class A G protein-coupled receptor family. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320183 [Multi-domain]  Cd Length: 285  Bit Score: 106.10  E-value: 1.44e-26
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKeceIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15055 216 KSERKAAKTLGIVVGVFLLCWLPYYIVSLVDPYIS---TPSSVFDVLIWLGYFNSCLNPLIYALFYPWFRKAL 285
7tmA_D4_dopamine_R cd15308
D4 dopamine receptor of the D2-like family, member of the class A family of ...
231-302 1.74e-25

D4 dopamine receptor of the D2-like family, member of the class A family of seven-transmembrane G protein-coupled receptors; Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. Activation of D2-like family receptors is linked to G proteins of the G(i) family. This leads to a decrease in adenylate cyclase activity, thereby decreasing cAMP levels. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease.


Pssm-ID: 320434 [Multi-domain]  Cd Length: 258  Bit Score: 102.61  E-value: 1.74e-25
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15308 187 RERKAMRVLPVVVGAFLFCWTPFFVVHITRALCESCSIPPQLISIVTWLGYVNSALNPVIYTVFNAEFRNVF 258
7tmA_Histamine_H2R cd15051
histamine subtype H2 receptor, member of the class A family of seven-transmembrane G ...
221-302 4.38e-25

histamine subtype H2 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes histamine receptor subtype H2R, a member of histamine receptor family, which belongs to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). The H2R subtype selectively interacts with the G(s)-type G protein that activates adenylate cyclase, leading to increased cAMP production and activation of Protein Kinase A. H2R is found in various tissues such as the brain, stomach, and heart. Its most prominent role is in histamine-induced gastric acid secretion. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320179 [Multi-domain]  Cd Length: 287  Bit Score: 102.03  E-value: 4.38e-25
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 221 AKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKeCEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15051 207 ANSSKSAATAREHKATVTLAAVLGAFIICWFPYFTYFTYRGLCG-DNINETALSVVLWLGYANSALNPILYAFLNRDFRR 285

                ..
gi 45647651 301 AF 302
Cdd:cd15051 286 AF 287
7tmA_Dop1R2-like cd15067
dopamine 1-like receptor 2 from Drosophila melanogaster and similar proteins, member of the ...
229-302 7.29e-25

dopamine 1-like receptor 2 from Drosophila melanogaster and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; G protein-coupled dopamine 1-like receptor 2 is expressed in Drosophila heads and it shows significant sequence similarity with vertebrate and invertebrate dopamine receptors. Although the Drosophila Dop1R2 receptor does not cluster into the D1-like structural group, it does show pharmacological properties similar to D1-like receptors. As shown in vertebrate D1-like receptors, agonist stimulation of Dop1R2 activates adenylyl cyclase to increase cAMP levels and also generates a calcium signal through stimulation of phospholipase C.


Pssm-ID: 320195 [Multi-domain]  Cd Length: 262  Bit Score: 100.89  E-value: 7.29e-25
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTA--VASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15067 187 AAKEQKAAKTLGIVMGVFILCWLPFFVTNILIGFCPSNCVSNPdiLFPLVTWLGYINSGMNPIIYACSSRDFRRAF 262
7tmA_Octopamine_R cd15063
octopamine receptors in invertebrates, member of the class A family of seven-transmembrane G ...
229-302 8.70e-25

octopamine receptors in invertebrates, member of the class A family of seven-transmembrane G protein-coupled receptors; G-protein coupled receptor for octopamine (OA), which functions as a neurotransmitter, neurohormone, and neuromodulator in invertebrate nervous system. Octopamine (also known as beta, 4-dihydroxyphenethylamine) is an endogenous trace amine that is highly similar to norepinephrine, but lacks a hydroxyl group, and has effects on the adrenergic and dopaminergic nervous systems. Based on the pharmacological and signaling profiles, the octopamine receptors can be classified into at least two groups: OA1 receptors elevate intracellular calcium levels in muscle, whereas OA2 receptors activate adenylate cyclase and increase cAMP production.


Pssm-ID: 320191 [Multi-domain]  Cd Length: 266  Bit Score: 100.65  E-value: 8.70e-25
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15063 194 ARMETKAAKTVAIIVGCFIFCWLPFFTVYLVRAFCEDC-IPPLLFSVFFWLGYCNSALNPCIYALFSRDFRFAF 266
7tmA_TAAR2_3_4 cd15312
trace amine-associated receptors 2, 3, 4, and similar receptors, member of the class A family ...
216-302 2.29e-23

trace amine-associated receptors 2, 3, 4, and similar receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; TAAR2, TAAR3, and TAAR4 are among the 15 identified trace amine-associated receptor subtypes, which form a distinct subfamily within the class A G protein-coupled receptor family. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320437 [Multi-domain]  Cd Length: 289  Bit Score: 97.42  E-value: 2.29e-23
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 216 PHQKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCkecEIHTAVA--SLFLWLGYFNSTLNPVIYTI 293
Cdd:cd15312 204 PSVTKGDSKNKLSKKKERKAAKTLSIVMGVFLLCWLPFFVATLIDPFL---NFSTPVDlfDALVWLGYFNSTCNPLIYGF 280

                ....*....
gi 45647651 294 FNPEFRRAF 302
Cdd:cd15312 281 FYPWFQKAF 289
7tmA_D1-like_dopamine_R cd15057
D1-like family of dopamine receptors, member of the class A family of seven-transmembrane G ...
230-302 4.94e-23

D1-like family of dopamine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. The D1-like family receptors are coupled to G proteins of the G(s) family, which activate adenylate cyclase, causing cAMP formation and activation of protein kinase A. In contrast, activation of D2-like family receptors is linked to G proteins of the G(i) family, which inhibit adenylate cyclase. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320185 [Multi-domain]  Cd Length: 299  Bit Score: 96.73  E-value: 4.94e-23
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLC------KECEIHTaVASLFLWLGYFNSTLNPVIYTiFNPEFRRAF 302
Cdd:cd15057 223 RRETKALKTLSIIMGVFVCCWLPFFILNCVLPFCdlrtaqFPCVPDT-TFIVFVWLGWANSSLNPIIYA-FNADFRKAF 299
7tmA_Histamine_H1R cd15050
histamine subtype H1 receptor, member of the class A family of seven-transmembrane G ...
228-302 9.29e-23

histamine subtype H1 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes histamine receptor subtype H1R, a member of histamine receptor family, which belongs to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). H1R selectively interacts with the G(q)-type G protein that activates phospholipase C and the phosphatidylinositol pathway. Antihistamines, a widely used anti-allergy medication, act on the H1 subtype and produce drowsiness as a side effect. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320178 [Multi-domain]  Cd Length: 263  Bit Score: 95.19  E-value: 9.29e-23
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 228 EAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15050 190 AVNRERKAAKQLGFIMAAFILCWIPYFILFMVIAFCKNC-CNENLHMFTIWLGYINSTLNPFIYPLCNENFKKTF 263
7tmA_alpha1_AR cd15062
alpha-1 adrenergic receptors, member of the class A family of seven-transmembrane G ...
227-302 2.32e-22

alpha-1 adrenergic receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-1 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that primarily mediate smooth muscle contraction: alpha-1A, alpha-1B, and alpha-1D. Activation of alpha-1 receptors by catecholamines such as norepinephrine and epinephrine couples to the G(q) protein, which then activates the phospholipase C pathway, leading to an increase in IP3 and calcium. Consequently, the elevation of intracellular calcium concentration leads to vasoconstriction in smooth muscle of blood vessels. In addition, activation of alpha-1 receptors by phenylpropanolamine (PPA) produces anorexia and may induce appetite suppression in rats.


Pssm-ID: 320190 [Multi-domain]  Cd Length: 261  Bit Score: 94.09  E-value: 2.32e-22
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 227 LEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15062 186 FKFSREKKAAKTLGIVVGAFVLCWFPFFVVLPLGSLFSTLKPPEPVFKVVFWLGYFNSCLNPIIYPCSSREFKRAF 261
7tmA_5-HT1A_vertebrates cd15330
serotonin receptor subtype 1A from vertebrates, member of the class A family of ...
229-302 2.96e-22

serotonin receptor subtype 1A from vertebrates, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT1 receptors, one of 14 mammalian 5-HT receptors, is a member of the class A of GPCRs and is activated by the endogenous neurotransmitter and peripheral signal mediator serotonin (5-hydroxytryptamine, 5-HT). The 5-HT1 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. The 5-HT1 receptor subfamily includes 5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as the 5-HT2C receptor. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression.


Pssm-ID: 320453 [Multi-domain]  Cd Length: 260  Bit Score: 93.89  E-value: 2.96e-22
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKE-CEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15330 186 AARERKTVKTLGIIMGTFILCWLPFFIVALVLPFCEStCHMPELLGAIINWLGYSNSLLNPIIYAYFNKDFQSAF 260
7tmA_mAChR cd15049
muscarinic acetylcholine receptor subfamily, member of the class A family of ...
227-302 3.33e-22

muscarinic acetylcholine receptor subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors; Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. Activation of mAChRs by agonist (acetylcholine) leads to a variety of biochemical and electrophysiological responses. In general, the exact nature of these responses and the subsequent physiological effects mainly depend on the molecular and pharmacological identity of the activated receptor subtype(s). All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 341322 [Multi-domain]  Cd Length: 262  Bit Score: 93.54  E-value: 3.33e-22
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 227 LEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15049 188 RETARERKAARTLSAILLAFIITWTPYNILVLVSTFCAKC-IPDTLWSFGYWLCYINSTINPFCYALCNKTFRKTF 262
7tmA_TAAR1 cd15314
trace amine-associated receptor 1 and similar receptors, member of the class A family of ...
218-302 3.61e-22

trace amine-associated receptor 1 and similar receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The trace amine-associated receptor 1 (TAAR1) is one of the 15 identified trace amine-associated receptor subtypes, which form a distinct subfamily within the class A G protein-coupled receptor family. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. TAAR1 is coupled to the Gs protein, which leads to activation of adenylate cyclase, and is thought to play functional role in the regulation of brain monoamines. TAAR1 is also shown to be activated by psychoactive compounds such as Ecstasy (MDMA), amphetamine and LSD. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320438 [Multi-domain]  Cd Length: 282  Bit Score: 93.85  E-value: 3.61e-22
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFvMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPE 297
Cdd:cd15314 199 QSARTKSGASSSKMERKATKTLAIVMGVFLLCWTPFF-LCNIIDPFINYSIPPVLIEVLNWLGYSNSTLNPFIYAFFYSW 277

                ....*
gi 45647651 298 FRRAF 302
Cdd:cd15314 278 FRKAF 282
7tmA_alpha2B_AR cd15321
alpha-2 adrenergic receptors subtype B, member of the class A family of seven-transmembrane G ...
223-302 6.65e-22

alpha-2 adrenergic receptors subtype B, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback.


Pssm-ID: 320444 [Multi-domain]  Cd Length: 268  Bit Score: 93.06  E-value: 6.65e-22
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 223 RRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKE-CEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15321 188 RIYLIAKNREKRFTFVLAVVIGVFVLCWFPFFFSYSLGAICPElCKVPHSLFQFFFWIGYCNSSLNPVIYTIFNQDFRRA 267

                .
gi 45647651 302 F 302
Cdd:cd15321 268 F 268
7tmA_alpha2C_AR cd15323
alpha-2 adrenergic receptors subtype C, member of the class A family of seven-transmembrane G ...
231-302 1.07e-21

alpha-2 adrenergic receptors subtype C, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback.


Pssm-ID: 320446 [Multi-domain]  Cd Length: 261  Bit Score: 92.31  E-value: 1.07e-21
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKE-CEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15323 189 REKRFTFVLAVVMGVFVVCWFPFFFSYSLYGICREaCEVPEPLFKFFFWIGYCNSSLNPVIYTIFNQDFRRSF 261
7tmA_alpha-2D_AR cd15324
alpha-2 adrenergic receptors subtype D, member of the class A family of seven-transmembrane G ...
231-302 7.69e-21

alpha-2 adrenergic receptors subtype D, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback.


Pssm-ID: 320447 [Multi-domain]  Cd Length: 256  Bit Score: 89.93  E-value: 7.69e-21
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKE-CEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15324 184 REKRFTFVLAVVMGVFVLCWFPFFFTYSLHAVCRKrCGIPDALFNLFFWIGYCNSSVNPIIYTIFNRDFRKAF 256
7tmA_Beta_AR cd15058
beta adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane ...
223-302 9.03e-21

beta adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors; The beta adrenergic receptor (beta adrenoceptor), also known as beta AR, is activated by hormone adrenaline (epinephrine) and plays important roles in regulating cardiac function and heart rate, as well as pulmonary physiology. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of beta-ARs can lead to cardiac dysfunction such as arrhythmias or heart failure. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320186 [Multi-domain]  Cd Length: 305  Bit Score: 90.59  E-value: 9.03e-21
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 223 RRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTiFNPEFRRAF 302
Cdd:cd15058 228 RPSRLTVVKEHKALKTLGIIMGTFTLCWLPFFIANIINVFNRNL-PPGEVFLLLNWLGYINSGLNPIIYC-RSPEFRTAF 305
7tmA_5-HT5 cd15328
serotonin receptor subtype 5, member of the class A family of seven-transmembrane G ...
229-302 9.48e-21

serotonin receptor subtype 5, member of the class A family of seven-transmembrane G protein-coupled receptors; 5-HT5 receptor, one of 14 mammalian 5-HT receptors, is activated by the neurotransmitter and peripheral signal mediator serotonin (also known as 5-hydroxytryptamine or 5-HT). The 5-HT5A and 5-HT5B receptors have been cloned from rat and mouse, but only the 5-HT5A isoform has been identified in human because of the presence of premature stop codons in the human 5-HT5B gene, which prevents a functional receptor from being expressed. 5-HT5 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/0) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression.


Pssm-ID: 320451 [Multi-domain]  Cd Length: 259  Bit Score: 89.62  E-value: 9.48e-21
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCkECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15328 187 AQKEKRAALMVGILIGVFVLCWIPFFLTELISPLC-SCDIPPIWKSIFLWLGYSNSFFNPLIYTAFNKNYNNAF 259
7tmA_D2_dopamine_R cd15309
D2 subtype of the D2-like family of dopamine receptors, member of the class A family of ...
230-302 1.08e-20

D2 subtype of the D2-like family of dopamine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. Activation of D2-like family receptors is linked to G proteins of the G(i) family. This leads to a decrease in adenylate cyclase activity, thereby decreasing cAMP levels. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease.


Pssm-ID: 320435 [Multi-domain]  Cd Length: 254  Bit Score: 89.32  E-value: 1.08e-20
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCkECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15309 183 QKEKKATQMLAIVLGVFIICWLPFFITHILNMHC-DCNIPPALYSAFTWLGYVNSAVNPIIYTTFNIEFRKAF 254
7tmA_5-HT4 cd15056
serotonin receptor subtype 4, member of the class A family of seven-transmembrane G ...
230-302 1.14e-20

serotonin receptor subtype 4, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT4 subtype is a member of the serotonin receptor family that belongs to the class A G protein-coupled receptors, and binds the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the mammalian central nervous system (CNS). 5-HT4 receptors are selectively linked to G proteins of the G(s) family, which positively stimulate adenylate cyclase, causing cAMP formation and activation of protein kinase A. 5-HT4 receptor-specific agonists have been shown to enhance learning and memory in animal studies. Moreover, hippocampal 5-HT4 receptor expression has been reported to be inversely correlated with memory performance in humans. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320184 [Multi-domain]  Cd Length: 294  Bit Score: 89.86  E-value: 1.14e-20
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKEcEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15056 223 RTETKAAKTLGIIMGCFCVCWAPFFVTNIVDPFIGY-RVPYLLWTAFLWLGYINSGLNPFLYAFFNKSFRRAF 294
7tmA_EDG-like cd14972
endothelial differentiation gene family, member of the class A family of seven-transmembrane G ...
217-302 1.86e-20

endothelial differentiation gene family, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represents the endothelial differentiation gene (Edg) family of G-protein coupled receptors, melanocortin/ACTH receptors, and cannabinoid receptors as well as their closely related receptors. The Edg GPCRs bind blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). Melanocortin receptors bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. Two types of cannabinoid receptors, CB1 and CB2, are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system.


Pssm-ID: 341317 [Multi-domain]  Cd Length: 275  Bit Score: 88.89  E-value: 1.86e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 217 HQKLAKRRQLLEAKR------ERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVI 290
Cdd:cd14972 184 WRHANAIAARQEAAVpaqpstSRKLAKTVVIVLGVFLVCWLPLLILLVLDVLCPSVCDIQAVFYYFLVLALLNSAINPII 263
                        90
                ....*....|..
gi 45647651 291 YTIFNPEFRRAF 302
Cdd:cd14972 264 YAFRLKEMRRAV 275
7tmA_5-HT1E cd15335
serotonin receptor subtype 1E, member of the class A family of seven-transmembrane G ...
229-302 2.10e-20

serotonin receptor subtype 1E, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT1 receptors, one of 14 mammalian 5-HT receptors, is a member of the class A of GPCRs and is activated by the endogenous neurotransmitter and peripheral signal mediator serotonin (5-hydroxytryptamine, 5-HT). The 5-HT1 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. The 5-HT1 receptor subfamily includes 5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as the 5-HT2C receptor. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression.


Pssm-ID: 320457 [Multi-domain]  Cd Length: 258  Bit Score: 88.44  E-value: 2.10e-20
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLcKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15335 186 ASRERKAARILGLILGAFILSWLPFFIKELIVGL-SVMTVSPEVADFLTWLGYVNSLVNPLLYTSFNEDFKLAF 258
7tmA_alpha2A_AR cd15322
alpha-2 adrenergic receptors subtype A, member of the class A family of seven-transmembrane G ...
231-302 2.82e-20

alpha-2 adrenergic receptors subtype A, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback.


Pssm-ID: 320445 [Multi-domain]  Cd Length: 259  Bit Score: 88.46  E-value: 2.82e-20
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKeCEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15322 189 REKRFTFVLAVVIGVFVICWFPFFFTYTLTAVCD-CSVPETLFKFFFWFGYCNSSLNPVIYTIFNHDFRRAF 259
7tmA_5-HT6 cd15054
serotonin receptor subtype 6, member of the class A family of seven-transmembrane G ...
224-302 1.68e-19

serotonin receptor subtype 6, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT6 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the mammalian central nervous system (CNS). 5-HT6 receptors are selectively linked to G proteins of the G(s) family, which positively stimulate adenylate cyclase, causing cAMP formation and activation of protein kinase A. The 5-HT6 receptors mediates excitatory neurotransmission and are involved in learning and memory; thus they are promising targets for the treatment of cognitive impairment. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320182 [Multi-domain]  Cd Length: 267  Bit Score: 86.40  E-value: 1.68e-19
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 224 RQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCkECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15054 191 RILLAARKALKASLTLGILLGMFFVTWLPFFVANVVQAVC-DC-VSPGLFDVLTWLGYCNSTMNPIIYPLFMRDFKRAL 267
7tm_1 pfam00001
7 transmembrane receptor (rhodopsin family); This family contains, amongst other ...
222-291 1.71e-19

7 transmembrane receptor (rhodopsin family); This family contains, amongst other G-protein-coupled receptors (GCPRs), members of the opsin family, which have been considered to be typical members of the rhodopsin superfamily. They share several motifs, mainly the seven transmembrane helices, GCPRs of the rhodopsin superfamily. All opsins bind a chromophore, such as 11-cis-retinal. The function of most opsins other than the photoisomerases is split into two steps: light absorption and G-protein activation. Photoisomerases, on the other hand, are not coupled to G-proteins - they are thought to generate and supply the chromophore that is used by visual opsins.


Pssm-ID: 459624 [Multi-domain]  Cd Length: 256  Bit Score: 85.81  E-value: 1.71e-19
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651   222 KRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAV---ASLFLWLGYFNSTLNPVIY 291
Cdd:pfam00001 184 KQKSSERTQRRRKALKTLAVVVVVFILCWLPYHIVNLLDSLALDCELSRLLdkaLSVTLWLAYVNSCLNPIIY 256
7tmA_alpha1B_AR cd15326
alpha-1 adrenergic receptors subtype B, member of the class A family of seven-transmembrane G ...
227-302 1.90e-19

alpha-1 adrenergic receptors subtype B, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-1 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that primarily mediate smooth muscle contraction: alpha-1A, alpha-1B, and alpha-1D. Activation of alpha-1 receptors by catecholamines such as norepinephrine and epinephrine couples to the G(q) protein, which then activates the phospholipase C pathway, leading to an increase in IP3 and calcium. Consequently, the elevation of intracellular calcium concentration leads to vasoconstriction in smooth muscle of blood vessels. In addition, activation of alpha-1 receptors by phenylpropanolamine (PPA) produces anorexia and may induce appetite suppression in rats.


Pssm-ID: 320449 [Multi-domain]  Cd Length: 261  Bit Score: 86.10  E-value: 1.90e-19
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 227 LEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15326 186 LKFSREKKAAKTLGIVVGMFILCWLPFFIALPLGSLFSHLKPPETLFKIIFWLGYFNSCLNPIIYPCSSKEFKRAF 261
7tmA_alpha1A_AR cd15325
alpha-1 adrenergic receptors subtype A, member of the class A family of seven-transmembrane G ...
227-302 1.96e-19

alpha-1 adrenergic receptors subtype A, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-1 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that primarily mediate smooth muscle contraction: alpha-1A, alpha-1B, and alpha-1D. Activation of alpha-1 receptors by catecholamines such as norepinephrine and epinephrine couples to the G(q) protein, which then activates the phospholipase C pathway, leading to an increase in IP3 and calcium. Consequently, the elevation of intracellular calcium concentration leads to vasoconstriction in smooth muscle of blood vessels. In addition, activation of alpha-1 receptors by phenylpropanolamine (PPA) produces anorexia and may induce appetite suppression in rats.


Pssm-ID: 320448 [Multi-domain]  Cd Length: 261  Bit Score: 86.10  E-value: 1.96e-19
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 227 LEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15325 186 LKFSREKKAAKTLGIVVGCFVLCWLPFFLVMPIGSIFPAYKPSDTVFKITFWLGYFNSCINPIIYPCSSQEFKKAF 261
7tmA_TAAR5-like cd15317
trace amine-associated receptor 5 and similar receptors, member of the class A family of ...
229-302 2.15e-19

trace amine-associated receptor 5 and similar receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Included in this group are mammalian TAAR5, TAAR6, TAAR8, TAAR9, and similar proteins. They are among the 15 identified trace amine-associated receptors (TAARs), a distinct subfamily within the class A G protein-coupled receptors. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320440 [Multi-domain]  Cd Length: 290  Bit Score: 86.35  E-value: 2.15e-19
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCkECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15317 218 ASRERKAAKTLAIVMGIFLFCWLPYFIDTIVDEYS-NFITPAIVFDAVIWLGYFNSAFNPFIYAFFYPWFRKAF 290
7tm_classA_rhodopsin-like cd00637
rhodopsin receptor-like class A family of the seven-transmembrane G protein-coupled receptor ...
209-295 2.59e-19

rhodopsin receptor-like class A family of the seven-transmembrane G protein-coupled receptor superfamily; Class A rhodopsin-like receptors constitute about 90% of all GPCRs. The class A GPCRs include the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Based on sequence similarity, GPCRs can be divided into six major classes: class A (rhodopsin-like family), class B (Methuselah-like, adhesion and secretin-like receptor family), class C (metabotropic glutamate receptor family), class D (fungal mating pheromone receptors), class E (cAMP receptor family), and class F (frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections.


Pssm-ID: 410626 [Multi-domain]  Cd Length: 275  Bit Score: 85.80  E-value: 2.59e-19
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 209 VLASIANPHQKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKE-CEIHTAVASLFLWLGYFNSTLN 287
Cdd:cd00637 188 LRRHRRRIRSSSSNSSRRRRRRRERKVTKTLLIVVVVFLLCWLPYFILLLLDVFGPDpSPLPRILYFLALLLAYLNSAIN 267

                ....*...
gi 45647651 288 PVIYTIFN 295
Cdd:cd00637 268 PIIYAFFN 275
7tmA_Histamine_H3R_H4R cd15048
histamine receptor subtypes H3R and H4R, member of the class A family of seven-transmembrane G ...
210-302 3.58e-19

histamine receptor subtypes H3R and H4R, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes histamine subtypes H3R and H4R, members of the histamine receptor family, which belong to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). The H3 and H4 receptors couple to the G(i)-proteins, which leading to the inhibition of cAMP formation. The H3R receptor functions as a presynaptic autoreceptors controlling histamine release and synthesis. The H4R plays an important role in histamine-mediated chemotaxis in mast cells and eosinophils. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320176 [Multi-domain]  Cd Length: 296  Bit Score: 85.82  E-value: 3.58e-19
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 210 LASIANPHQKLAKRRQLlEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPV 289
Cdd:cd15048 205 LPASQNPSRARSQREQV-KLRRDRKAAKSLAILVLVFLICWAPYTILTIIRSFCSGSCVDSYLYEFTFWLLWTNSAINPF 283
                        90
                ....*....|...
gi 45647651 290 IYTIFNPEFRRAF 302
Cdd:cd15048 284 LYAACHPRFRKAF 296
7tmA_alpha1D_AR cd15327
alpha-1 adrenergic receptors subtype D, member of the class A family of seven-transmembrane G ...
227-302 5.91e-19

alpha-1 adrenergic receptors subtype D, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-1 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that primarily mediate smooth muscle contraction: alpha-1A, alpha-1B, and alpha-1D. Activation of alpha-1 receptors by catecholamines such as norepinephrine and epinephrine couples to the G(q) protein, which then activates the phospholipase C pathway, leading to an increase in IP3 and calcium. Consequently, the elevation of intracellular calcium concentration leads to vasoconstriction in smooth muscle of blood vessels. In addition, activation of alpha-1 receptors by phenylpropanolamine (PPA) produces anorexia and may induce appetite suppression in rats.


Pssm-ID: 320450 [Multi-domain]  Cd Length: 261  Bit Score: 84.58  E-value: 5.91e-19
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 227 LEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15327 186 LKFSREKKAAKTLAIVVGVFILCWFPFFFVLPLGSFFPALKPSEMVFKVIFWLGYFNSCVNPIIYPCSSKEFKRAF 261
7tmA_D1A_dopamine_R cd15320
D1A (or D1) subtype dopamine receptor, member of the class A family of seven-transmembrane G ...
230-302 1.67e-18

D1A (or D1) subtype dopamine receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. The D1-like family receptors are coupled to G proteins of the G(s) family, which activate adenylate cyclase, causing cAMP formation and activation of protein kinase A. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease.


Pssm-ID: 320443 [Multi-domain]  Cd Length: 319  Bit Score: 84.28  E-value: 1.67e-18
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECE-----IHTAVASLFLWLGYFNSTLNPVIYTiFNPEFRRAF 302
Cdd:cd15320 243 KRETKVLKTLSVIMGVFVCCWLPFFILNCMVPFCKPTStepfcISSTTFDVFVWFGWANSSLNPIIYA-FNADFRKAF 319
7tmA_5-HT2_insect-like cd15307
serotonin receptor subtype 2 from insects, member of the class A family of seven-transmembrane ...
232-306 1.41e-17

serotonin receptor subtype 2 from insects, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320433 [Multi-domain]  Cd Length: 279  Bit Score: 81.15  E-value: 1.41e-17
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 232 ERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTA--VASLFLWLGYFNSTLNPVIYTIFNPEFRRAFKRIL 306
Cdd:cd15307 200 EQKATKVLGVVFFTFVILWSPFFVLNLLPTVCAECEERIShwVFDVVTWLGYASSMVNPIFYTIFNKVFRQAFKKVL 276
7tmA_mAChR_M3 cd15299
muscarinic acetylcholine receptor subtype M3, member of the class A family of ...
228-307 1.51e-16

muscarinic acetylcholine receptor subtype M3, member of the class A family of seven-transmembrane G protein-coupled receptors; Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. The M3 receptor is mainly located in smooth muscle, exocrine glands and vascular endothelium. It induces vomiting in the central nervous system and is a critical regulator of glucose homeostasis by modulating insulin secretion. Generally, M3 receptor causes contraction of smooth muscle resulting in vasoconstriction and increased glandular secretion. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320426 [Multi-domain]  Cd Length: 274  Bit Score: 78.07  E-value: 1.51e-16
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 228 EAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAFKRILF 307
Cdd:cd15299 192 ETIKEKKAAQTLSAILLAFIITWTPYNIMVLVNTFCDSC-IPKTYWNLGYWLCYINSTVNPVCYALCNKTFRTTFKMLLL 270
7tmA_Beta3_AR cd15959
beta-3 adrenergic receptors (adrenoceptors), member of the class A family of ...
222-302 4.06e-16

beta-3 adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors; The beta-3 adrenergic receptor (beta-3 adrenoceptor), also known as beta-3 AR, is activated by adrenaline and plays important roles in regulating cardiac function and heart rate. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of betrayers can lead to cardiac dysfunction such as arrhythmias or heart failure.


Pssm-ID: 320625 [Multi-domain]  Cd Length: 302  Bit Score: 77.25  E-value: 4.06e-16
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKecEIHTAVASLFL-WLGYFNSTLNPVIYTiFNPEFRR 300
Cdd:cd15959 224 RRPSRLLAIKEHKALKTLGIIMGTFTLCWLPFFVANIIKVFCR--SLVPDPAFLFLnWLGYANSAFNPIIYC-RSPDFRS 300

                ..
gi 45647651 301 AF 302
Cdd:cd15959 301 AF 302
7tmA_mAChR_GAR-2-like cd15302
muscarinic acetylcholine receptor GAR-2 and similar proteins, member of the class A family of ...
229-302 6.66e-16

muscarinic acetylcholine receptor GAR-2 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. Activation of mAChRs by agonist (acetylcholine) leads to a variety of biochemical and electrophysiological responses. In general, the exact nature of these responses and the subsequent physiological effects mainly depend on the molecular and pharmacological identity of the activated receptor subtype(s). All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320429 [Multi-domain]  Cd Length: 266  Bit Score: 76.32  E-value: 6.66e-16
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECE-IHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15302 192 ANRARKALRTITFILGAFVICWTPYHILATIYGFCEAPPcVNETLYTISYYLCYMNSPINPFCYALANQQFKKTF 266
7tmA_GPR119_R_insulinotropic_receptor cd15104
G protein-coupled receptor 119, also called glucose-dependent insulinotropic receptor, member ...
234-302 9.61e-16

G protein-coupled receptor 119, also called glucose-dependent insulinotropic receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR119 is activated by oleoylethanolamide (OEA), a naturally occurring bioactive lipid with hypophagic and anti-obesity effects. Immunohistochemistry and double-immunofluorescence studies revealed the predominant GPR119 localization in pancreatic polypeptide (PP)-cells of islets. In addition, GPR119 expression is elevated in islets of obese hyperglycemic mice as compared to control islets, suggesting a possible involvement of this receptor in the development of obesity and diabetes. GPR119 has a significant sequence similarity with the members of the endothelial differentiation gene family. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320232 [Multi-domain]  Cd Length: 283  Bit Score: 75.87  E-value: 9.61e-16
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIhTAVASLFLW-LGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15104 215 KAARTVAVLIGCFLLSWLPFQITGLVQALCDECKL-YDVLEDYLWlLGLCNSLLNPWIYAFWQKEVRRAL 283
7tmA_Beta1_AR cd15958
beta-1 adrenergic receptors (adrenoceptors), member of the class A family of ...
207-302 1.16e-15

beta-1 adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors; The beta-1 adrenergic receptor (beta-1 adrenoceptor), also known as beta-1 AR, is activated by adrenaline (epinephrine) and plays important roles in regulating cardiac function and heart rate. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of betrayers can lead to cardiac dysfunction such as arrhythmias or heart failure.


Pssm-ID: 320624 [Multi-domain]  Cd Length: 298  Bit Score: 76.09  E-value: 1.16e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 207 GGVLASIANPHQKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTL 286
Cdd:cd15958 205 GRFHNTLTGLGRKCKRRPSRILALREQKALKTLGIIMGVFTLCWLPFFLVNVVNVFNREL-VPDWLFVFFNWLGYANSAF 283
                        90
                ....*....|....*.
gi 45647651 287 NPVIYTiFNPEFRRAF 302
Cdd:cd15958 284 NPIIYC-RSPDFRKAF 298
7tmA_5-HT2C cd15305
serotonin receptor subtype 2C, member of the class A family of seven-transmembrane G ...
222-302 1.67e-15

serotonin receptor subtype 2C, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 341346 [Multi-domain]  Cd Length: 275  Bit Score: 75.33  E-value: 1.67e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQLLeaKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKEC---EIHTAVASLFLWLGYFNSTLNPVIYTIFNPEF 298
Cdd:cd15305 188 QRQQAI--NNERRASKVLGIVFFLFLIMWCPFFITNILSVLCKEAcdqKLMEELLNVFVWVGYVSSGINPLVYTLFNKTY 265

                ....
gi 45647651 299 RRAF 302
Cdd:cd15305 266 RRAF 269
7tmA_5-HT2B cd15306
serotonin receptor subtype 2B, member of the class A family of seven-transmembrane G ...
223-304 2.17e-15

serotonin receptor subtype 2B, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 341347 [Multi-domain]  Cd Length: 277  Bit Score: 74.87  E-value: 2.17e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 223 RRQLLeaKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKEC--EIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15306 191 RKQTI--TNEQRASKVLGIVFFLFLLMWCPFFITNITSVLCDSCnqTTLQMLMEIFVWIGYVSSGVNPLVYTLFNKTFRD 268

                ....
gi 45647651 301 AFKR 304
Cdd:cd15306 269 AFGR 272
7tmA_D1B_dopamine_R cd15319
D1B (or D5) subtype dopamine receptor, member of the class A family of seven-transmembrane G ...
230-302 3.81e-15

D1B (or D5) subtype dopamine receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. The D1-like family receptors are coupled to G proteins of the G(s) family, which activate adenylate cyclase, causing cAMP formation and activation of protein kinase A. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease.


Pssm-ID: 320442 [Multi-domain]  Cd Length: 317  Bit Score: 74.61  E-value: 3.81e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKE----------CEIHTAVaSLFLWLGYFNSTLNPVIYTiFNPEFR 299
Cdd:cd15319 237 KKETKVLKTLSVIMGVFVCCWLPFFILNCMVPFCDRppadpdaglpCVSETTF-DVFVWFGWANSSLNPIIYA-FNADFR 314

                ...
gi 45647651 300 RAF 302
Cdd:cd15319 315 KVF 317
7tmA_mAChR_M1 cd17790
muscarinic acetylcholine receptor subtype M1, member of the class A family of ...
228-302 9.57e-15

muscarinic acetylcholine receptor subtype M1, member of the class A family of seven-transmembrane G protein-coupled receptors; Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. Activation of mAChRs by agonist (acetylcholine) leads to a variety of biochemical and electrophysiological responses. M1 is the dominant mAChR subtype involved in learning and memory. It is linked to synaptic plasticity, neuronal excitability, and neuronal differentiation during early development. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 341356 [Multi-domain]  Cd Length: 262  Bit Score: 72.69  E-value: 9.57e-15
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 228 EAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd17790 189 ETIKEKKAARTLSAILLAFILTWTPYNIMVLVSTFCKDC-VPKTLWELGYWLCYVNSTVNPMCYALCNKSFRDTF 262
7tmA_mAChR_M5 cd15300
muscarinic acetylcholine receptor subtype M5, member of the class A family of ...
228-302 1.88e-14

muscarinic acetylcholine receptor subtype M5, member of the class A family of seven-transmembrane G protein-coupled receptors; Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. M5 mAChR is primarily found in the central nervous system and mediates acetylcholine-induced dilation of cerebral blood vessels. Activation of M5 receptor triggers a variety of cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides, and modulation of potassium channels. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320427 [Multi-domain]  Cd Length: 262  Bit Score: 71.98  E-value: 1.88e-14
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 228 EAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15300 189 ETIKERKAAQTLSAILLAFIITWTPYNIMVLVSTFCSDC-IPLTLWHLGYWLCYVNSTVNPMCYALCNKTFRKTF 262
7tmA_Adenosine_R cd14968
adenosine receptor subfamily, member of the class A family of seven-transmembrane G ...
230-302 2.49e-14

adenosine receptor subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors; The adenosine receptors (or P1 receptors), a family of G protein-coupled purinergic receptors, bind adenosine as their endogenous ligand. There are four types of adenosine receptors in human, designated as A1, A2A, A2B, and A3. Each type is encoded by a different gene and has distinct functions with some overlap. For example, both A1 and A2A receptors are involved in regulating myocardial oxygen consumption and coronary blood flow in the heart, while the A2A receptor also has a broad spectrum of anti-inflammatory effects in the body. These two receptors also expressed in the brain, where they have important roles in the release of other neurotransmitters such as dopamine and glutamate, while the A2B and A3 receptors found primarily in the periphery and play important roles in inflammation and immune responses. The A1 and A3 receptors preferentially interact with G proteins of the G(i/o) family, thereby lowering the intracellular cAMP levels, whereas the A2A and A2B receptors interact with G proteins of the G(s) family, activating adenylate cyclase to elevate cAMP levels.


Pssm-ID: 341316 [Multi-domain]  Cd Length: 285  Bit Score: 71.90  E-value: 2.49e-14
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHtavASLFLW---LGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd14968 213 QKEVKAAKSLAIILFLFALCWLPLHIINCITLFCPECKVP---KILTYIailLSHANSAVNPIVYAYRIRKFRQTF 285
7tmA_5-HT2A cd15304
serotonin receptor subtype 2A, member of the class A family of seven-transmembrane G ...
232-302 2.62e-14

serotonin receptor subtype 2A, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 341345 [Multi-domain]  Cd Length: 267  Bit Score: 71.50  E-value: 2.62e-14
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 45647651 232 ERKAAQTLAIITGAFVICWLPFFVMALTMSLCKE-CEIHT--AVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15304 194 EQKASKVLGIVFFLFVVMWCPFFITNVMAVICKEsCNEVVigGLLNVFVWIGYLSSAVNPLVYTLFNKTYRSAF 267
7tmA_TAAR5 cd15318
trace amine-associated receptor 5, member of the class A family of seven-transmembrane G ...
229-301 3.56e-14

trace amine-associated receptor 5, member of the class A family of seven-transmembrane G protein-coupled receptors; The trace amine-associated receptor 5 is one of the 15 identified amine-activated G protein-coupled receptors (TAARs), a distinct subfamily within the class A G protein-coupled receptors. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320441 [Multi-domain]  Cd Length: 282  Bit Score: 71.43  E-value: 3.56e-14
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15318 210 SKRERKAAKTLGIAVGVYLLCWLPFTIDTMVDSLLNFI-TPPLLFDIIIWFAYFNSACNPLIYVFSYPWFRKA 281
7tmA_Beta2_AR cd15957
beta-2 adrenergic receptors (adrenoceptors), member of the class A family of ...
231-302 3.61e-13

beta-2 adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors; Beta-2 AR is activated by adrenaline that plays important roles in cardiac function and pulmonary physiology. While beta-1 AR and beta-2 AR are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway, beta-2 AR can couple to both G(s) and G(i) proteins in the heart. Moreover, beta-2 AR activation leads to smooth muscle relaxation and bronchodilation in the lung. The beta adrenergic receptors are a subfamily of the class A rhodopsin-like G protein-coupled receptors.


Pssm-ID: 341355 [Multi-domain]  Cd Length: 301  Bit Score: 68.74  E-value: 3.61e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKEcEIHTAVASLFLWLGYFNSTLNPVIYTiFNPEFRRAF 302
Cdd:cd15957 232 KEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQDN-LIRKEVYILLNWIGYVNSGFNPLIYC-RSPDFRIAF 301
7tmA_CCKR-like cd14993
cholecystokinin receptors and related proteins, member of the class A family of ...
233-302 3.91e-13

cholecystokinin receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represents four G-protein coupled receptors that are members of the RFamide receptor family, including cholecystokinin receptors (CCK-AR and CCK-BR), orexin receptors (OXR), neuropeptide FF receptors (NPFFR), and pyroglutamylated RFamide peptide receptor (QRFPR). These RFamide receptors are activated by their endogenous peptide ligands that share a common C-terminal arginine (R) and an amidated phenylanine (F) motif. CCK-AR (type A, alimentary; also known as CCK1R) is found abundantly on pancreatic acinar cells and binds only sulfated CCK-peptides with very high affinity, whereas CCK-BR (type B, brain; also known as CCK2R), the predominant form in the brain and stomach, binds CCK or gastrin and discriminates poorly between sulfated and non-sulfated peptides. CCK is implicated in regulation of digestion, appetite control, and body weight, and is involved in neurogenesis via CCK-AR. There is some evidence to support that CCK and gastrin, via their receptors, are involved in promoting cancer development and progression, acting as growth and invasion factors. Orexins (OXs; also referred to as hypocretins) are neuropeptide hormones that regulate the sleep-wake cycle and potently influence homeostatic systems regulating appetite and feeding behavior or modulating emotional responses such as anxiety or panic. OXs are synthesized as prepro-orexin (PPO) in the hypothalamus and then proteolytically cleaved into two forms of isoforms: orexin-A (OX-A) and orexin-B (OX-B). OXA is a 33 amino-acid peptide with N-terminal pyroglutamyl residue and two intramolecular disulfide bonds, whereas OXB is a 28 amino-acid linear peptide with no disulfide bonds. OX-A binds orexin receptor 1 (OX1R) with high-affinity, but also binds with somewhat low-affinity to OX2R, and signals primarily to Gq coupling, whereas OX-B shows a strong preference for the orexin receptor 2 (OX2R) and signals through Gq or Gi/o coupling. The 26RFa, also known as QRFP (Pyroglutamylated RFamide peptide), is a 26-amino acid residue peptide that exerts similar orexigenic activity including the regulation of feeding behavior in mammals. It is the ligand for G-protein coupled receptor 103 (GPR103), which is predominantly expressed in paraventricular (PVN) and ventromedial (VMH) nuclei of the hypothalamus. GPR103 shares significant protein sequence homology with orexin receptors (OX1R and OX2R), which have recently shown to produce a neuroprotective effect in Alzheimer's disease by forming a functional heterodimer with GPR103. Neuropeptide FF (NPFF) is a mammalian octapeptide that has been implicated in a wide range of physiological functions in the brain including pain sensitivity, insulin release, food intake, memory, blood pressure, and opioid-induced tolerance and hyperalgesia. The effects of NPFF are mediated through neuropeptide FF1 and FF2 receptors (NPFF1-R and NPFF2-R) which are predominantly expressed in the brain. NPFF induces pro-nociceptive effects, mainly through the NPFF1-R, and anti-nociceptive effects, mainly through the NPFF2-R.


Pssm-ID: 320124 [Multi-domain]  Cd Length: 296  Bit Score: 68.39  E-value: 3.91e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 233 RKAAQTLAIITGAFVICWLPFFVMAL-----TMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd14993 222 KKVARMLIVVVVLFALSWLPYYVLSIlldfgPLSSEESDENFLLILPFAQLLGYSNSAINPIIYCFMSKKFRRGF 296
7tmA_Histamine_H4R cd15295
histamine receptor subtype H4R, member of the class A family of seven-transmembrane G ...
231-306 6.41e-13

histamine receptor subtype H4R, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes histamine subtype H4R, a member of the histamine receptor family, which belong to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). The H3 and H4 receptors couple to the G(i)-proteins, which leading to the inhibition of cAMP formation. The H3R receptor functions as a presynaptic autoreceptors controlling histamine release and synthesis. The H4R plays an important role in histamine-mediated chemotaxis in mast cells and eosinophils. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320422 [Multi-domain]  Cd Length: 267  Bit Score: 67.54  E-value: 6.41e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCkECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAFKRIL 306
Cdd:cd15295 192 RDRKLAKSLAIILGTFAICWAPYSLFTIIRAAC-EKHRGSPWYNFAFWLQWFNSFINPFLYPLCHKRFRKAFLKIF 266
7tmA_Opioid_R-like cd14970
opioid receptors and related proteins, member of the class A family of seven-transmembrane G ...
210-302 1.09e-12

opioid receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes opioid receptors, somatostatin receptors, melanin-concentrating hormone receptors (MCHRs), and neuropeptides B/W receptors. Together they constitute the opioid receptor-like family, members of the class A G-protein coupled receptors. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and are involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others. G protein-coupled somatostatin receptors (SSTRs), which display strong sequence similarity with opioid receptors, binds somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. MCHR binds melanin concentrating hormone and is presumably involved in the neuronal regulation of food intake. Despite strong homology with somatostatin receptors, MCHR does not appear to bind somatostatin. Neuropeptides B/W receptors are primarily expressed in the CNS and stimulate the cortisol secretion by activating the adenylate cyclase- and the phospholipase C-dependent signaling pathways.


Pssm-ID: 320101 [Multi-domain]  Cd Length: 282  Bit Score: 67.32  E-value: 1.09e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 210 LASIANPHQKLAKRRqlleAKRERKAAQTLAIITGAFVICWLPF--FVMALTMSLCKECEIHTAVASLFLWLGYFNSTLN 287
Cdd:cd14970 192 LRSSRNLSTSGAREK----RRARRKVTRLVLVVVAVFVVCWLPFhvFQIVRLLIDPPETLTVVGVFLFCIALSYANSCLN 267
                        90
                ....*....|....*
gi 45647651 288 PVIYTIFNPEFRRAF 302
Cdd:cd14970 268 PILYAFLDENFRKSF 282
7tmA_TAAR6_8_9 cd15316
trace amine-associated receptors 6, 8, and 9, member of the class A family of ...
229-301 1.17e-12

trace amine-associated receptors 6, 8, and 9, member of the class A family of seven-transmembrane G protein-coupled receptors; Included in this group are mammalian TAAR6, TAAR8, TAAR9, and similar proteins. They are among the 15 identified amine-associated receptors (TAARs), a distinct subfamily within the class A G protein-coupled receptors. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320439 [Multi-domain]  Cd Length: 290  Bit Score: 67.19  E-value: 1.17e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15316 218 ARRERKAAKTLGITVIAFLVSWLPYLIDVLIDAFMNFI-TPPYIYEICCWCAYYNSAMNPLIYALFYPWFRKA 289
7tmA_mAChR_DM1-like cd15301
muscarinic acetylcholine receptor DM1, member of the class A family of seven-transmembrane G ...
222-302 2.10e-12

muscarinic acetylcholine receptor DM1, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup includes muscarinic acetylcholine receptor DM1-like from invertebrates. Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. Activation of mAChRs by agonist (acetylcholine) leads to a variety of biochemical and electrophysiological responses. In general, the exact nature of these responses and the subsequent physiological effects mainly depend on the molecular and pharmacological identity of the activated receptor subtype(s). All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320428 [Multi-domain]  Cd Length: 270  Bit Score: 66.00  E-value: 2.10e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQlleAKRERKAAQTLAIITGAFVICWLPFFVMAL--TMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15301 192 KKRQ---KKQESKAAKTLSAILLAFIVTWTPYNVLVLikAFFPCSDT-IPTELWDFSYYLCYINSTINPLCYALCNAAFR 267

                ...
gi 45647651 300 RAF 302
Cdd:cd15301 268 RTY 270
7tmA_mAChR_M4 cd15298
muscarinic acetylcholine receptor subtype M4, member of the class A family of ...
227-302 3.25e-12

muscarinic acetylcholine receptor subtype M4, member of the class A family of seven-transmembrane G protein-coupled receptors; Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to G(i/o) types of G proteins. The M4 receptor is mainly found in the CNS and function as an inhibitory autoreceptor regulating acetycholine release. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 341344 [Multi-domain]  Cd Length: 262  Bit Score: 65.43  E-value: 3.25e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 227 LEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15298 188 LASARERKVTRTIFAILLAFILTWTPYNVMVLVNTFCQSC-IPDTVWSIGYWLCYVNSTINPACYALCNATFKKTF 262
7tmA_mAChR_M2 cd15297
muscarinic acetylcholine receptor subtype M2, member of the class A family of ...
229-302 3.57e-12

muscarinic acetylcholine receptor subtype M2, member of the class A family of seven-transmembrane G protein-coupled receptors; Muscarinic acetylcholine receptors (mAChRs) regulate the activity of many fundamental central and peripheral functions. The mAChR family consists of 5 subtypes M1-M5, which can be further divided into two major groups according to their G-protein coupling preference. The M1, M3 and M5 receptors selectively interact with G proteins of the G(q/11) family, whereas the M2 and M4 receptors preferentially link to the G(i/o) types of G proteins. Activation of M2 receptor causes a decrease in cAMP production, generally leading to inhibitory-type effects. This causes an outward current of potassium in the heart, resulting in a decreased heart rate. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320424 [Multi-domain]  Cd Length: 262  Bit Score: 65.37  E-value: 3.57e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECeIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15297 190 SSREKKVTRTILAILLAFIITWTPYNVMVLINTFCASC-IPNTVWTIGYWLCYINSTINPACYALCNATFKKTF 262
7tmA_S1PR cd15102
sphingosine-1-phosphate receptors, member of the class A family of seven-transmembrane G ...
229-302 1.29e-10

sphingosine-1-phosphate receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13).


Pssm-ID: 320230 [Multi-domain]  Cd Length: 270  Bit Score: 60.95  E-value: 1.29e-10
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLC--KECEIHTAvASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15102 196 SPRSLALLKTVLIVLLVFIACWGPLFILLLLDVACpvKTCPILYK-ADWFLALAVLNSALNPIIYTLRSRELRRAV 270
7tmA_Opsins_type2_animals cd14969
type 2 opsins in animals, member of the class A family of seven-transmembrane G ...
230-302 1.38e-10

type 2 opsins in animals, member of the class A family of seven-transmembrane G protein-coupled receptors; This rhodopsin family represents the type 2 opsins found in vertebrates and invertebrates except sponge. Type 2 opsins primarily function as G protein coupled receptors and are responsible for vision as well as for circadian rhythm and pigment regulation. On the contrary, type 1 opsins such as bacteriorhodopsin and proteorhodopsin are found in both prokaryotic and eukaryotic microbes, functioning as light-gated ion channels, proton pumps, sensory receptors and in other unknown functions. Although these two opsin types share seven-transmembrane domain topology and a conserved lysine reside in the seventh helix, type 1 opsins do not activate G-proteins and are not evolutionarily related to type 2. Type 2 opsins can be classified into six distinct subfamilies including the vertebrate opsins/encephalopsins, the G(o) opsins, the G(s) opsins, the invertebrate G(q) opsins, the photoisomerases, and the neuropsins.


Pssm-ID: 381741 [Multi-domain]  Cd Length: 284  Bit Score: 61.07  E-value: 1.38e-10
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd14969 212 KAEKKVAKMVLVMIVAFLIAWTPYAVVSLYVSFGGESTIPPLLATIPALFAKSSTIYNPIIYVFMNKQFRRAL 284
7tmA_Adenosine_R_A2A cd15068
adenosine receptor subtype A2A, member of the class A family of seven-transmembrane G ...
220-302 1.55e-10

adenosine receptor subtype A2A, member of the class A family of seven-transmembrane G protein-coupled receptors; The A2A receptor, a member of the adenosine receptor family of G protein-coupled receptors, binds adenosine as its endogenous ligand and is involved in regulating myocardial oxygen consumption and coronary blood flow. High-affinity A2A and low-affinity A2B receptors are preferentially coupled to G proteins of the stimulatory (Gs) family, which lead to activation of adenylate cyclase and thereby increasing the intracellular cAMP levels. The A2A receptor activation protects against tissue injury and acts as anti-inflammatory agent. In human skin endothelial cells, activation of A2B receptor, but not the A2A receptor, promotes angiogenesis. Alternatively, activated A2A receptor, but not the A2B receptor, promotes angiogenesis in human umbilical vein and lung microvascular endothelial cells. The A2A receptor alters cardiac contractility indirectly by modulating the anti-adrenergic effect of A1 receptor, while the A2B receptor exerts direct effects on cardiac contractile function, but does not modulate beta-adrenergic or A1 anti-adrenergic effects.


Pssm-ID: 320196 [Multi-domain]  Cd Length: 293  Bit Score: 61.11  E-value: 1.55e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 220 LAKRRQL--LEAK------------RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTA-VASLFLWLGYFNS 284
Cdd:cd15068 196 LAARRQLkqMESQplpgerarstlqKEVHAAKSLAIIVGLFALCWLPLHIINCFTFFCPDCSHAPLwLMYLAIVLSHTNS 275
                        90
                ....*....|....*...
gi 45647651 285 TLNPVIYTIFNPEFRRAF 302
Cdd:cd15068 276 VVNPFIYAYRIREFRQTF 293
7tmA_Vasopressin_Oxytocin cd15196
vasopressin and oxytocin receptors, member of the class A family of seven-transmembrane G ...
237-302 3.81e-10

vasopressin and oxytocin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Vasopressin (also known as arginine vasopressin or anti-diuretic hormone) and oxytocin are synthesized in the hypothalamus and are released from the posterior pituitary gland. The actions of vasopressin are mediated by the interaction of this hormone with three receptor subtypes: V1aR, V1bR, and V2R. These subtypes are differ in localization, function, and signaling pathways. Activation of V1aR and V1bR stimulate phospholipase C, while activation of V2R stimulates adenylate cyclase. Although vasopressin and oxytocin differ only by two amino acids and stimulate the same cAMP/PKA pathway, they have divergent physiological functions. Vasopressin is involved in regulating blood pressure and the balance of water and sodium ions, whereas oxytocin plays an important role in the uterus during childbirth and in lactation.


Pssm-ID: 320324 [Multi-domain]  Cd Length: 264  Bit Score: 59.56  E-value: 3.81e-10
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 237 QTLAIITgAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15196 200 LTLVVVA-CYIVCWTPFFVVQMWAAWDPTAPIEGPAFVIIMLLASLNSCTNPWIYLAFSGNLRRAL 264
7tmA_Histamine_H3R cd15296
histamine receptor subtypes H3R and H3R-like, member of the class A family of ...
223-302 6.61e-10

histamine receptor subtypes H3R and H3R-like, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes histamine subtypes H3R and H3R-like, members of the histamine receptor family, which belong to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). The H3 and H4 receptors couple to the G(i)-proteins, which leading to the inhibition of cAMP formation. The H3R receptor functions as a presynaptic autoreceptors controlling histamine release and synthesis. The H4R plays an important role in histamine-mediated chemotaxis in mast cells and eosinophils. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320423 [Multi-domain]  Cd Length: 271  Bit Score: 58.65  E-value: 6.61e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 223 RRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15296 192 QKRRFRLSRDKKVAKSLAIIVCVFGLCWAPYTLLMIIRAACHGHCVPDYWYETSFWLLWVNSAINPVLYPLCHMSFRRAF 271
7tmA_NPFFR2 cd15980
neuropeptide FF receptor 2, member of the class A family of seven-transmembrane G ...
229-302 6.98e-10

neuropeptide FF receptor 2, member of the class A family of seven-transmembrane G protein-coupled receptors; Neuropeptide FF (NPFF) is a mammalian octapeptide that belongs to a family of neuropeptides containing an RF-amide motif at their C-terminus that have been implicated in a wide range of physiological functions in the brain including pain sensitivity, insulin release, food intake, memory, blood pressure, and opioid-induced tolerance and hyperalgesia. The effects of these peptides are mediated through neuropeptide FF1 and FF2 receptors (NPFF1-R and NPFF2-R) which are predominantly expressed in the brain. NPFF induces pro-nociceptive effects, mainly through the NPFF1-R, and anti-nociceptive effects, mainly through the NPFF2-R. NPFF has been shown to inhibit adenylate cyclase via the Gi protein coupled to NPFF1-R.


Pssm-ID: 320646 [Multi-domain]  Cd Length: 299  Bit Score: 59.13  E-value: 6.98e-10
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFL-----WLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15980 221 SRKKQKVIKMLLIVALLFILSWLPLWTLMMLSDYANLSPNQLQIINIYIypfahWLAFFNSSVNPIIYGFFNENFRRGF 299
7tmA_SSTR3 cd15972
somatostatin receptor type 3, member of the class A family of seven-transmembrane G ...
221-302 7.65e-10

somatostatin receptor type 3, member of the class A family of seven-transmembrane G protein-coupled receptors; G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. SSTR3 is coupled to inward rectifying potassium channels. SSTR3 plays critical roles in growth hormone secretion, endothelial cell cycle arrest and apoptosis. Furthermore, SSTR3 is expressed in the normal human pituitary and in nearly half of pituitary growth hormone adenomas.


Pssm-ID: 320638 [Multi-domain]  Cd Length: 279  Bit Score: 58.66  E-value: 7.65e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 221 AKRRQLLEAKR---ERKAAQTLAIITGAFVICWLPFFVMALTMSLCK--ECEIHTAVASLFLWLGYFNSTLNPVIYTIFN 295
Cdd:cd15972 193 GRRVRATSTKRrgsERKVTRMVVIVVAAFVLCWLPFYALNIVNLVCPlpEEPSLFGLYFFVVVLSYANSCANPIIYGFLS 272

                ....*..
gi 45647651 296 PEFRRAF 302
Cdd:cd15972 273 DNFKQGF 279
7tmA_S1PR3_Edg3 cd15345
sphingosine-1-phosphate receptor subtype 3 (S1PR3 or S1P3), also called endothelial ...
219-302 8.35e-10

sphingosine-1-phosphate receptor subtype 3 (S1PR3 or S1P3), also called endothelial differentiation gene 3 (Edg3), member of the class A family of seven-transmembrane G protein-coupled receptors; The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13).


Pssm-ID: 320467 [Multi-domain]  Cd Length: 270  Bit Score: 58.68  E-value: 8.35e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 219 KLAKRRQLLEAKRERKAA--QTLAIITGAFVICWLPFFVMALTMSLC--KECEIHTAvASLFLWLGYFNSTLNPVIYTIF 294
Cdd:cd15345 184 KSSSRRVTNHRNSERSMAllRTVVIVVGVFIACWSPLFILLLIDVACevKQCPILYK-ADWFIALAVLNSAMNPIIYTLA 262

                ....*...
gi 45647651 295 NPEFRRAF 302
Cdd:cd15345 263 SKEMRRAF 270
7tmA_S1PR1_Edg1 cd15346
sphingosine-1-phosphate receptor subtype 1 (S1PR1 or S1P1), also called endothelial ...
218-302 1.26e-09

sphingosine-1-phosphate receptor subtype 1 (S1PR1 or S1P1), also called endothelial differentiation gene 1 (Edg1), member of the class A family of seven-transmembrane G protein-coupled receptors; The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13).


Pssm-ID: 320468 [Multi-domain]  Cd Length: 277  Bit Score: 57.96  E-value: 1.26e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQLLEAKR--ERKAA--QTLAIITGAFVICWLPFFVMALTMSLCK--ECEIhTAVASLFLWLGYFNSTLNPVIY 291
Cdd:cd15346 188 RRLTFRKNIRKASRssEKSMAllKTVIIVLSVFIACWAPLFILLLLDVGCKvkTCSI-LFKAEYFLVLAVLNSATNPIIY 266
                        90
                ....*....|.
gi 45647651 292 TIFNPEFRRAF 302
Cdd:cd15346 267 TLTNKEMRRAF 277
7tmA_MCR cd15103
melanocortin receptors, member of the class A family of seven-transmembrane G protein-coupled ...
234-302 1.44e-09

melanocortin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function.


Pssm-ID: 320231 [Multi-domain]  Cd Length: 270  Bit Score: 57.88  E-value: 1.44e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSLCKE---CEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15103 199 KGAVTLTILLGVFIFCWAPFFLHLTLMISCPSnpyCACYMSHFNVYLILIMCNSVIDPLIYAFRSQELRKTF 270
7tmA_SSTR1 cd15970
somatostatin receptor type 1, member of the class A family of seven-transmembrane G ...
230-302 1.45e-09

somatostatin receptor type 1, member of the class A family of seven-transmembrane G protein-coupled receptors; G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. SSTR1 is coupled to a Na/H exchanger, voltage-dependent calcium channels, and AMPA/kainate glutamate channels. SSTR1 is expressed in the normal human pituitary and in nearly half of all pituitary adenoma subtypes.


Pssm-ID: 320636 [Multi-domain]  Cd Length: 276  Bit Score: 58.00  E-value: 1.45e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEihTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15970 206 RSERKITLMVMMVVTVFVICWMPFYVVQLVSVFVGQHD--ATVSQLSVILGYANSCANPILYGFLSDNFKRSF 276
7tmA_TACR_family cd14992
tachykinin receptor and closely related proteins, member of the class A family of ...
222-302 1.63e-09

tachykinin receptor and closely related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This subfamily includes G-protein coupled receptors for a variety of neuropeptides of the tachykinin (TK) family as well as closely related receptors. The tachykinins are widely distributed throughout the mammalian central and peripheral nervous systems and act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. SP is a high-affinity endogenous ligand for NK1R, which interacts with the Gq protein and activates phospholipase C, leading to elevation of intracellular calcium. NK2R is a high-affinity receptor for NKA, the tachykinin neuropeptide substance K. SP and NKA are found in the enteric nervous system and mediate in the regulation of gastrointestinal motility, secretion, vascular permeability, and pain perception. NK3R is activated by its high-affinity ligand, NKB, which is primarily involved in the central nervous system and plays a critical role in the regulation of gonadotropin hormone release and the onset of puberty.


Pssm-ID: 320123 [Multi-domain]  Cd Length: 291  Bit Score: 57.83  E-value: 1.63e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCK--ECEIHTAVASLFL-WLGYFNSTLNPVIYTIFNPEF 298
Cdd:cd14992 208 KEVERKRLKCKRRVIKMLVCVVVLFVICWLPFHLFFLLRDFFPliMKEKHTLQVYYFLhWIAMSNSMYNPIIYVTLNNNF 287

                ....
gi 45647651 299 RRAF 302
Cdd:cd14992 288 RKNF 291
7tm_GPCRs cd14964
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ...
217-295 2.18e-09

seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections.


Pssm-ID: 410628 [Multi-domain]  Cd Length: 267  Bit Score: 57.44  E-value: 2.18e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 217 HQKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFN 295
Cdd:cd14964 189 RVRAIRSAASLNTDKNLKATKSLLILVITFLLCWLPFSIVFILHALVAAGQGLNLLSILANLLAVLASTLNPFIYCLGN 267
7tmA_Kappa_opioid_R cd15091
opioid receptor subtype kappa, member of the class A family of seven-transmembrane G ...
222-302 2.35e-09

opioid receptor subtype kappa, member of the class A family of seven-transmembrane G protein-coupled receptors; The kappa-opioid receptor binds the opioid peptide dynorphin as the primary endogenous ligand. The opioid receptor family is composed of four major subtypes: mu (MOP), delta (DOP), kappa (KOP) opioid receptors, and the nociceptin/orphanin FQ peptide receptor (NOP). They are distributed widely in the central nervous system and respond to classic alkaloid opiates, such as morphine and heroin, as well as to endogenous peptide ligands, which include dynorphins, enkephalins, endorphins, endomorphins, and nociceptin. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others.


Pssm-ID: 320219 [Multi-domain]  Cd Length: 282  Bit Score: 57.27  E-value: 2.35e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQLLEAKRE-----RKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLF--LWLGYFNSTLNPVIYTIF 294
Cdd:cd15091 195 KSVRLLSGSREkdrnlRRITRLVLVVVAVFVVCWTPIHIFILVEALGSVSHSTAAVSSYYfcIALGYTNSSLNPILYAFL 274

                ....*...
gi 45647651 295 NPEFRRAF 302
Cdd:cd15091 275 DENFKRCF 282
7tmA_Glycoprotein_LRR_R-like cd14980
glycoprotein hormone receptors and leucine-rich repeats containing G protein-coupled receptors, ...
207-302 2.61e-09

glycoprotein hormone receptors and leucine-rich repeats containing G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This subfamily includes the glycoprotein hormone receptors (GPHRs), vertebrate receptors containing 17 leucine-rich repeats (LGR4-6), and the relaxin family peptide receptors (also known as LGR7 and LGR8). They are seven transmembrane domain receptors with a very large extracellular N-terminal domain containing many leucine-rich repeats responsible for hormone recognition and binding. The glycoprotein hormone receptor family contains receptors for the pituitary hormones, thyrotropin (thyroid-stimulating hormone receptor), follitropin (follicle-stimulating hormone receptor), and lutropin (luteinizing hormone receptor). Glycoprotein hormone receptors couple primarily to the G(s)-protein and promotes cAMP production, but also to the G(i)- or G(q)-protein. Two orphan GPCRs, LGR7 and LGR8, have been recently identified as receptors for the relaxin peptide hormones.


Pssm-ID: 320111 [Multi-domain]  Cd Length: 286  Bit Score: 57.25  E-value: 2.61e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 207 GGVLASIANPhqklAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALtMSLCKECEIHTA----VASLFLWLgyf 282
Cdd:cd14980 195 ILIFISVRKS----RKSARRSSSKRDKRIAIRLALILITDLICWLPYYIVIF-SGLLTSTEIDIHvlqfIAILALPL--- 266
                        90       100
                ....*....|....*....|
gi 45647651 283 NSTLNPVIYTIFNPEFRRAF 302
Cdd:cd14980 267 NSAINPYLYTLTTPTFKRDF 286
7tmA_S1PR5_Edg8 cd15348
sphingosine-1-phosphate receptor subtype 5 (S1PR5 or S1P5), also called endothelial ...
237-301 3.05e-09

sphingosine-1-phosphate receptor subtype 5 (S1PR5 or S1P5), also called endothelial differentiation gene 8 (Edg8), member of the class A family of seven-transmembrane G protein-coupled receptors; The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13).


Pssm-ID: 320470 [Multi-domain]  Cd Length: 277  Bit Score: 56.76  E-value: 3.05e-09
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 237 QTLAIITGAFVICWLPFFVMALTMSLC--KECEIHTAvASLFLWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15348 211 KTVTIVLGTFVACWLPLFLLLLLDVSCpaQACPVLLK-ADYFLGLAMINSLLNPIIYTLTSRDMRRA 276
7tmA_GPR61_GPR62-like cd15220
G protein-coupled receptors 61 and 62, member of the class A family of seven-transmembrane G ...
234-299 3.06e-09

G protein-coupled receptors 61 and 62, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup includes the orphan receptors GPR61 and GPR62, which are both constitutively active and predominantly expressed in the brain. While GPR61 couples to G(s) subtype of G proteins, the signaling pathway and function of GPR 62 are unknown. GPR61-deficient mice displayed significant hyperphagia and heavier body weight compared to wild-type mice, suggesting that GPR61 is involved in the regulation of food intake and body weight. GPR61 transcript expression was found in the caudate, putamen, and thalamus of human brain, whereas GPR62 transcript expression was found in the basal forebrain, frontal cortex, caudate, putamen, thalamus, and hippocampus. Both receptors share the highest sequence homology with each other and comprise a conserved subgroup within the class A family of GPCRs, which includes receptors for hormones, neurotransmitters, sensory stimuli, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, which then activate the heterotrimeric G proteins. Members of this subgroup contain [A/E]RY motif, a variant of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of the class A GPCRs and important for efficient G protein-coupled signal transduction.


Pssm-ID: 410633 [Multi-domain]  Cd Length: 264  Bit Score: 56.69  E-value: 3.06e-09
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15220 196 KAALTLAAIVGQFLCCWLPYFAFHLYSALAASPVSGGEAEEVVTWLAYSCFAVNPFFYGLLNRQIR 261
7tmA_FMRFamide_R-like cd14978
FMRFamide (Phe-Met-Arg-Phe) receptors and related proteins, member of the class A family of ...
230-302 4.26e-09

FMRFamide (Phe-Met-Arg-Phe) receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes Drosophila melanogaster G-protein coupled FMRFamide (Phe-Met-Arg-Phe-NH2) receptor DrmFMRFa-R and related invertebrate receptors, as well as the vertebrate proteins GPR139 and GPR142. DrmFMRFa-R binds with high affinity to FMRFamide and intrinsic FMRFamide-related peptides. FMRFamide is a neuropeptide from the family of FMRFamide-related peptides (FaRPs), which all containing a C-terminal RFamide (Arg-Phe-NH2) motif and have diverse functions in the central and peripheral nervous systems. FMRFamide is an important neuropeptide in many types of invertebrates such as insects, nematodes, molluscs, and worms. In invertebrates, the FMRFamide-related peptides are involved in the regulation of heart rate, blood pressure, gut motility, feeding behavior, and reproduction. On the other hand, in vertebrates such as mice, they play a role in the modulation of morphine-induced antinociception. Orphan receptors GPR139 and GPR142 are very closely related G protein-coupled receptors, but they have different expression patterns in the brain and in other tissues. These receptors couple to inhibitory G proteins and activate phospholipase C. Studies suggested that dimer formation may be required for their proper function. GPR142 is predominantly expressed in pancreatic beta-cells and mediates enhancement of glucose-stimulated insulin secretion, whereas GPR139 is mostly expressed in the brain and is suggested to play a role in the control of locomotor activity. Tryptophan and phenylalanine have been identified as putative endogenous ligands of GPR139.


Pssm-ID: 410630 [Multi-domain]  Cd Length: 299  Bit Score: 56.49  E-value: 4.26e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIH------TAVASLflwLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd14978 224 RRERRTTIMLIAVVIVFLICNLPAGILNILEAIFGESFLSpiyqllGDISNL---LVVLNSAVNFIIYCLFSSKFRRTF 299
7tmA_NOFQ_opioid_R cd15092
nociceptin/orphanin FQ peptide receptor, member of the class A family of seven-transmembrane G ...
222-302 5.00e-09

nociceptin/orphanin FQ peptide receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; The nociceptin (NOP) receptor binds nociceptin or orphanin FQ, a 17 amino acid endogenous neuropeptide. The NOP receptor is involved in the modulation of various brain activities including instinctive and emotional behaviors. The opioid receptor family is composed of four major subtypes: mu (MOP), delta (DOP), kappa (KOP) opioid receptors, and the nociceptin/orphanin FQ peptide receptor (NOP). They are distributed widely in the central nervous system and respond to classic alkaloid opiates, such as morphine and heroin, as well as to endogenous peptide ligands, which include dynorphins, enkephalins, endorphins, endomorphins, and nociceptin. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others.


Pssm-ID: 320220 [Multi-domain]  Cd Length: 279  Bit Score: 56.41  E-value: 5.00e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQLLEAKRE-----RKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLW--LGYFNSTLNPVIYTIF 294
Cdd:cd15092 192 RGVRLLSGSKEkdrnlRRITRLVLVVVAVFVGCWTPIQIFVLAQGLGVQPSSETAVAILRFCtaLGYVNSSLNPVLYAFL 271

                ....*...
gi 45647651 295 NPEFRRAF 302
Cdd:cd15092 272 DENFKACF 279
7tmA_PSP24-like cd15213
G protein-coupled receptor PSP24 and similar proteins, member of the class A family of ...
234-301 6.31e-09

G protein-coupled receptor PSP24 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes two human orphan receptors, GPR45 and GPR65, and their closely related proteins found in vertebrates and invertebrates. GPR45 and GPR 65 are also called PSP24-alpha (or PSP24-1) and PSP24-beta (or PSP24-2) in other vertebrates, respectively. These receptors exhibit the highest sequence homology to each other. PSP24 was originally identified as a novel, high-affinity lysophosphatidic acid (LPA) receptor in Xenopus laevis oocytes; however, PSP24 receptors (GPR45 and GPR63) have not been shown to be activated by LPA. Instead, sphingosine 1-phosphate and dioleoylphosphatidic acid have been shown to act as low affinity agonists for GPR63. PSP24 receptors are highly expressed in neuronal cells of cerebellum and their expression level remains constant from the early embryonic stages to adulthood, suggesting the important role of PSP24s in brain neuronal functions. Members of this subgroup contain the highly conserved Asp-Arg-Tyr/Phe (DRY/F) motif found in the third transmembrane helix (TM3) of the rhodopsin-like class A receptors which is important for efficient G protein-coupled signal transduction. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320341 [Multi-domain]  Cd Length: 262  Bit Score: 55.83  E-value: 6.31e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 234 KAAQTLAIITGAFVICWLPF--FVMALTMSLCKE--CEIHTAVaslfLWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15213 194 RAFTTILILFIGFSVCWLPYtvYSLLSVFSRYSSsfYVISTCL----LWLSYLKSAFNPVIYCWRIKKFREA 261
7tmA_SSTR5 cd15974
somatostatin receptor type 5, member of the class A family of seven-transmembrane G ...
220-302 6.68e-09

somatostatin receptor type 5, member of the class A family of seven-transmembrane G protein-coupled receptors; G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. SSTR5 is coupled to inward rectifying K channels and phospholipase C, and plays critical roles in growth hormone and insulin secretion. SSTR5 acts as a negative regulator of PDX-1 (pancreatic and duodenal homeobox-1) expression, which is a conserved homeodomain-containing beta cell-specific transcription factor essentially involved in pancreatic development, among many other functions.


Pssm-ID: 320640 [Multi-domain]  Cd Length: 277  Bit Score: 55.96  E-value: 6.68e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 220 LAKRRqlleaKRERKAAQTLAIITGAFVICWLPFFVMAL--TMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPE 297
Cdd:cd15974 198 STKRR-----KSERKVTRMVVIIVVVFVFCWLPFYMLNIvnLIVILPEEPAFVGVYFFVVVLSYANSCANPILYGFLSDN 272

                ....*
gi 45647651 298 FRRAF 302
Cdd:cd15974 273 FKQSF 277
7tmA_MC2R_ACTH_R cd15350
melanocortin receptor subtype 2, also called adrenocorticotropic hormone receptor, member of ...
234-302 8.45e-09

melanocortin receptor subtype 2, also called adrenocorticotropic hormone receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function.


Pssm-ID: 320472 [Multi-domain]  Cd Length: 270  Bit Score: 55.56  E-value: 8.45e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSLCKE---CEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15350 199 RGAITLTILLGVFVCCWAPFVLHLLLMMFCPMnpyCACYRSLFQVNGTLIMSHAVIDPAIYAFRSPELRNTF 270
7tmA_Angiotensin_R-like cd14985
angiotesin receptor family and its related G protein-coupled receptors, member of the class A ...
218-302 8.62e-09

angiotesin receptor family and its related G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes the angiotensin receptors, the bradykinin receptors, apelin receptor as well as putative G-protein coupled receptors (GPR15 and GPR25). Angiotensin II (Ang II), the main effector in the renin-angiotensin system, plays a crucial role in the regulation of cardiovascular homeostasis through its type 1 (AT1) and type 2 (AT2) receptors. Ang II contributes to cardiovascular diseases such as hypertension and atherosclerosis via AT1R activation. Ang II increases blood pressure through Gq-mediated activation of phospholipase C, resulting in phosphoinositide (PI) hydrolysis and increased intracellular calcium levels. Through the AT2 receptor, Ang II counteracts the vasoconstrictor action of AT1R and thereby induces vasodilation, sodium excretion, and reduction of blood pressure. Bradykinins (BK) are pro-inflammatory peptides that mediate various vascular and pain responses to tissue injury through its B1 and B2 receptors. Apelin (APJ) receptor binds the endogenous peptide ligands, apelin and Toddler/Elabela. APJ is an adipocyte-derived hormone that is ubiquitously expressed throughout the human body, and Toddler/Elabela is a short secretory peptide that is required for normal cardiac development in zebrafish. Activation of APJ receptor plays key roles in diverse physiological processes including vasoconstriction and vasodilation, cardiac muscle contractility, angiogenesis, and regulation of water balance and food intake. Orphan receptors, GPR15 and GPR25, share strong sequence homology to the angiotensin II type AT1 and AT2 receptors.


Pssm-ID: 341320 [Multi-domain]  Cd Length: 284  Bit Score: 55.46  E-value: 8.62e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQLL--EAKRERKAAQTLAIITGAFVICWLPF----FVMALT-MSLCKECEIHTAVASLF---LWLGYFNSTLN 287
Cdd:cd14985 190 RSLRKRYERTgkNGRKRRKSLKIIFALVVAFLVCWLPFhffkFLDFLAqLGAIRPCFWELFLDLGLpiaTCLAFTNSCLN 269
                        90
                ....*....|....*
gi 45647651 288 PVIYTIFNPEFRRAF 302
Cdd:cd14985 270 PFIYVFVDRRFRQKV 284
7tmA_HCAR-like cd14991
hydroxycarboxylic acid receptors and related proteins, member of the class A family of ...
220-299 9.83e-09

hydroxycarboxylic acid receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes the hydroxycarboxylic acid receptors (HCARs) as well as their closely related receptors, GPR31 and oxoeicosanoid receptor 1 (OXER1). HCARs are members of the class A family of G-protein coupled receptors (GPCRs). HCAR subfamily contain three receptor subtypes: HCAR1, HCAR2, and HCAR3. The endogenous ligand of HCAR1 (also known as lactate receptor 1, GPR104, or GPR81) is L-lactic acid. The endogenous ligands of HCAR2 (also known as niacin receptor 1, GPR109A, nicotinic acid receptor) and HCAR3 (also known as niacin receptor 2, orGPR109B) are 3-hydroxybutyric acid and 3-hydroxyoctanoic acid, respectively. All three HCA receptors are expressed in adipocytes, and are coupled to G(i)-proteins mediating anti-lipolytic effects in fat cells. OXER1 is a receptor for eicosanoids and polyunsaturated fatty acids such as 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-OXO-ETE), 5(S)-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5(S)-HPETE) and arachidonic acid, whereas GPR31 is a high-affinity receptor for 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-S-HETE).


Pssm-ID: 320122 [Multi-domain]  Cd Length: 280  Bit Score: 55.53  E-value: 9.83e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 220 LAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCK---ECEIHTAVASLF---LWLGYFNSTLNPVIYTI 293
Cdd:cd14991 192 LRIRQSLGKQARVQRAIRLVFLVVIVFVLCFLPSIIAGLLALVFKnlgSCRCLNSVAQLFhisLAFTYLNSALDPVIYCF 271

                ....*.
gi 45647651 294 FNPEFR 299
Cdd:cd14991 272 SSPWFR 277
7tmA_AstA_R_insect cd15096
allatostatin-A receptor in insects, member of the class A family of seven-transmembrane G ...
218-302 1.40e-08

allatostatin-A receptor in insects, member of the class A family of seven-transmembrane G protein-coupled receptors; The G protein-coupled AstA receptor binds allatostatin A. Three distinct types of allatostatin have been identified in the insects and crustaceans: AstA, AstB, and AstC. They both inhibit the biosynthesis of juvenile hormone and exert an inhibitory influence on food intake. Therefore, allatostatins are considered as potential targets for insect control.


Pssm-ID: 320224 [Multi-domain]  Cd Length: 284  Bit Score: 54.99  E-value: 1.40e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQLLEA-KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLW--LGYFNSTLNPVIYTIF 294
Cdd:cd15096 197 QKSPGGRRSAESqRGKRRVTRLVVVVVVVFAICWLPIHIILLLKYYGVLPETVLYVVIQILSncLAYGNSCVNPILYAFL 276

                ....*...
gi 45647651 295 NPEFRRAF 302
Cdd:cd15096 277 SQNFRKAF 284
7tmA_GnRHR-like cd15195
gonadotropin-releasing hormone and adipokinetic hormone receptors, member of the class A ...
223-302 1.65e-08

gonadotropin-releasing hormone and adipokinetic hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Gonadotropin-releasing hormone (GnRH) and adipokinetic hormone (AKH) receptors share strong sequence homology to each other, suggesting that they have a common evolutionary origin. GnRHR, also known as luteinizing hormone releasing hormone receptor (LHRHR), plays an central role in vertebrate reproductive function; its activation by binding to GnRH leads to the release of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland. Adipokinetic hormone (AKH) is a lipid-mobilizing hormone that is involved in control of insect metabolism. Generally, AKH behaves as a typical stress hormone by mobilizing lipids, carbohydrates and/or certain amino acids such as proline. Thus, it utilizes the body's energy reserves to fight the immediate stress problems and subdue processes that are less important. Although AKH is known to responsible for regulating the energy metabolism during insect flying, it is also found in insects that have lost its functional wings and predominantly walk for their locomotion. Both GnRH and AKH receptors are members of the class A of the seven-transmembrane, G-protein coupled receptor (GPCR) superfamily.


Pssm-ID: 320323 [Multi-domain]  Cd Length: 293  Bit Score: 54.71  E-value: 1.65e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 223 RRQLLEakRERKAAQTL-AIITGAFVICWLPFFVMALTMSLCKECE--IHTAVASLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15195 213 RTNSLE--RARMRTLRMtALIVLTFIVCWGPYYVLGLWYWFDKESIknLPPALSHIMFLLGYLNPCLHPIIYGVFMKEIR 290

                ...
gi 45647651 300 RAF 302
Cdd:cd15195 291 NWI 293
7tmA_LPAR1_Edg2 cd15344
lysophosphatidic acid receptor subtype 1 (LPAR1 or LPA1), also called endothelial ...
237-302 1.72e-08

lysophosphatidic acid receptor subtype 1 (LPAR1 or LPA1), also called endothelial differentiation gene 2 (Edg2), member of the class A family of seven-transmembrane G protein-coupled receptors; The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13).


Pssm-ID: 341348 [Multi-domain]  Cd Length: 273  Bit Score: 54.65  E-value: 1.72e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 237 QTLAIITGAFVICWLPFFVMALTMSLCKECEIhTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15344 209 KTVVIVLGAFIICWTPGLVLLLLDVCCPQCDV-LAYEKFFLLLAEFNSAMNPIIYSYRDKEMSATF 273
7tmA_S1PR2_Edg5 cd15347
sphingosine-1-phosphate receptor subtype 2 (S1PR2 or S1P2), also called endothelial ...
237-302 2.10e-08

sphingosine-1-phosphate receptor subtype 2 (S1PR2 or S1P2), also called endothelial differentiation gene 5 (Edg5), member of the class A family of seven-transmembrane G protein-coupled receptors; The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13).


Pssm-ID: 320469 [Multi-domain]  Cd Length: 266  Bit Score: 54.43  E-value: 2.10e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 45647651 237 QTLAIITGAFVICWLPFFVMALTMSLC--KECEIHTAvASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15347 200 KTVTIVLGVFIVCWLPAFIILLLDTSCkvKSCPILYK-ADYFFSVATLNSALNPVIYTLRSKDMRKEF 266
7tmA_LPAR cd15101
lysophosphatidic acid receptor subfamily, member of the class A family of seven-transmembrane ...
237-302 2.34e-08

lysophosphatidic acid receptor subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors; The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13).


Pssm-ID: 341325 [Multi-domain]  Cd Length: 274  Bit Score: 54.06  E-value: 2.34e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 237 QTLAIITGAFVICWLPFFVMALTMSL-CKECEIhTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15101 209 KTVVIVLGAFVVCWTPGLVVLLLDGLcCRQCNV-LAVEKFFLLLAEFNSAVNPIIYSYRDKEMSGTF 274
7tmA_BNGR-A34-like cd15000
putative neuropeptide receptor BNGR-A34 and similar proteins, member of the class A family of ...
233-302 2.47e-08

putative neuropeptide receptor BNGR-A34 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup includes putative neuropeptide receptor BNGR-A34 found in silkworm and its closely related proteins from invertebrates. They are members of the class A rhodopsin-like GPCRs, which represent a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320131 [Multi-domain]  Cd Length: 285  Bit Score: 54.35  E-value: 2.47e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 45647651 233 RKAAQTLAIITGAFVICWLPFFVMA-LTMSLCKECEIHTAVASLF--LW-----LGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15000 208 KKAAKTLFIVLITFVVCRIPFTALIfYRYKLVPNDNTQNSVSGSFhiLWfaskyLMFLNAAVNPLIYGFTNENFRKAF 285
7tmA_BK-2 cd15381
bradykinin receptor B2, member of the class A family of seven-transmembrane G protein-coupled ...
222-300 2.58e-08

bradykinin receptor B2, member of the class A family of seven-transmembrane G protein-coupled receptors; The bradykinin receptor family is a group of the seven transmembrane G-protein coupled receptors, whose endogenous ligand is the pro-inflammatory nonapeptide bradykinin that mediates various vascular and pain responses. Two major bradykinin receptor subtypes, B1 and B2, have been identified based on their pharmacological properties. The B1 receptor is rapidly induced by tissue injury and inflammation, whereas the B2 receptor is ubiquitously expressed on many tissue types. Both receptors contain three consensus sites for N-linked glycosylation in extracellular domains and couple to G(q) protein to activate phospholipase C, leading to phosphoinositide hydrolysis and intracellular calcium mobilization. They can also interact with G(i) protein to inhibit adenylate cyclase and activate the MAPK (mitogen-activated protein kinase) pathways.


Pssm-ID: 320503 [Multi-domain]  Cd Length: 284  Bit Score: 54.00  E-value: 2.58e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQLLEAKRERKAAQTLAIITGAFVICWLPF---------FVMALTMSLCKE--CEIHTAVASlflWLGYFNSTLNPVI 290
Cdd:cd15381 196 KMQKFKEIQTERKATVLVLAVLLMFFICWLPFhiftfldtlHKLGLISGCRWEdiLDIGTQIAT---FLAYSNSCLNPLL 272
                        90
                ....*....|
gi 45647651 291 YTIFNPEFRR 300
Cdd:cd15381 273 YVIVGKHFRK 282
7tmA_SSTR cd15093
somatostatin receptors, member of the class A family of seven-transmembrane G protein-coupled ...
230-302 2.71e-08

somatostatin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. They share common signaling cascades such as inhibition of adenylyl cyclase, activation of phosphotyrosine phosphatase activity, and G-protein-dependent regulation of MAPKs.


Pssm-ID: 320221 [Multi-domain]  Cd Length: 280  Bit Score: 54.01  E-value: 2.71e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFL--WLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15093 206 RSERKVTRMVVMVVVVFVICWLPFYVLQLVNVFVQLPETPALVGVYHFvvILSYANSCANPILYGFLSDNFKKSF 280
7tmA_GnRHR_invertebrate cd15384
invertebrate gonadotropin-releasing hormone receptors, member of the class A family of ...
223-294 2.81e-08

invertebrate gonadotropin-releasing hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; GnRHR, also known as luteinizing hormone releasing hormone receptor (LHRHR), plays an central role in vertebrate reproductive function; its activation by binding to GnRH leads to the release of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland. GnRHR is expressed predominantly in the gonadotrope membrane of the anterior pituitary as well as found in numerous extrapituitary tissues including lymphocytes, breast, ovary, prostate, and cancer cell lines. There are at least two types of GnRH receptors, GnRHR1 and GnRHR2, which couple primarily to G proteins of the Gq/11 family. GnRHR is closely related to the adipokinetic hormone receptor (AKH), which binds to a lipid-mobilizing hormone that is involved in control of insect metabolism. They share a common ancestor and are members of the class A of the seven-transmembrane, G-protein coupled receptor (GPCR) superfamily.


Pssm-ID: 320506 [Multi-domain]  Cd Length: 293  Bit Score: 53.98  E-value: 2.81e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 223 RRQLLEaKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIF 294
Cdd:cd15384 214 RQRLFH-KAKVKSLRMSAVIVTAFILCWTPYYVIMIWFLFFNPYPLNDILFDVIFFFGMSNSCVNPLIYGAF 284
7tmA_OXR cd15208
orexin receptors, member of the class A family of seven-transmembrane G protein-coupled ...
221-302 4.01e-08

orexin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Orexins (OXs, also referred to as hypocretins) are neuropeptide hormones that regulate the sleep-wake cycle and potently influence homeostatic systems regulating appetite and feeding behavior or modulating emotional responses such as anxiety or panic. OXs are synthesized as prepro-orexin (PPO) in the hypothalamus and then proteolytically cleaved into two forms of isoforms: orexin-A (OX-A) and orexin-B (OX-B). OXA is a 33 amino-acid peptide with N-terminal pyroglutamyl residue and two intramolecular disulfide bonds, whereas OXB is a 28 amino-acid linear peptide with no disulfide bonds. OX-A binds orexin receptor 1 (OX1R) with high-affinity, but also binds with somewhat low-affinity to OX2R, and signals primarily to Gq coupling, whereas OX-B shows a strong preference for the orexin receptor 2 (OX2R) and signals through Gq or Gi/o coupling. Thus, activation of OX1R or OX2R will activate phospholipase activity and the phosphatidylinositol and calcium signaling pathways. Additionally, OX2R activation can also lead to inhibition of adenylate cyclase.


Pssm-ID: 320336 [Multi-domain]  Cd Length: 303  Bit Score: 53.55  E-value: 4.01e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 221 AKRRQLleaKRERKAAQTLAIITGAFVICWLP---------FFVMaltmslckECEIHTAVASLFL---WLGYFNSTLNP 288
Cdd:cd15208 221 AEEKQL---RSRRKTAKMLIVVVIMFAICYLPvhllnilryVFGL--------FTVDRETIYAWFLfshWLVYANSAINP 289
                        90
                ....*....|....
gi 45647651 289 VIYTIFNPEFRRAF 302
Cdd:cd15208 290 IIYNFMSGKFREEF 303
7tmA_Delta_opioid_R cd15089
opioid receptor subtype delta, member of the class A family of seven-transmembrane G ...
233-302 4.33e-08

opioid receptor subtype delta, member of the class A family of seven-transmembrane G protein-coupled receptors; The delta-opioid receptor binds the endogenous pentapeptide ligands such as enkephalins and produces antidepressant-like effects. The opioid receptor family is composed of four major subtypes: mu (MOP), delta (DOP), kappa (KOP) opioid receptors, and the nociceptin/orphanin FQ peptide receptor (NOP). They are distributed widely in the central nervous system and respond to classic alkaloid opiates, such as morphine and heroin, as well as to endogenous peptide ligands, which include dynorphins, enkephalins, endorphins, endomorphins, and nociceptin. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others.


Pssm-ID: 320217 [Multi-domain]  Cd Length: 281  Bit Score: 53.42  E-value: 4.33e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 233 RKAAQTLAIITGAFVICWLPF--FVMALTM-SLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15089 209 RRITRMVLVVVAAFIICWTPIhiFVIVWTLvDIDRRNPLVVAALHLCIALGYANSSLNPVLYAFLDENFKRCF 281
7tmA_Anaphylatoxin_R-like cd14974
anaphylatoxin receptors and related G protein-coupled chemokine receptors, member of the class ...
221-302 4.37e-08

anaphylatoxin receptors and related G protein-coupled chemokine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This subfamily of G-protein coupled receptors includes anaphylatoxin receptors, formyl peptide receptors (FPR), prostaglandin D2 receptor 2, GPR1, and related chemokine receptors. The anaphylatoxin receptors are a group of G-protein coupled receptors that bind anaphylatoxins. The members of this group include C3a and C5a receptors. The formyl peptide receptors (FPRs) are chemoattractant GPCRs that involved in mediating immune responses to infection. They are expressed mainly on polymorphonuclear and mononuclear phagocytes and bind N-formyl-methionyl peptides (FMLP), which are derived from the mitochondrial proteins of ruptured host cells or invading pathogens. Chemokine receptor-like 1 (also known as chemerin receptor 23) is a GPCR for the chemoattractant adipokine chemerin, also known as retinoic acid receptor responder protein 2 (RARRES2), and for the omega-3 fatty acid derived molecule resolvin E1. Interaction with chemerin induces activation of the MAPK and PI3K signaling pathways leading to downstream functional effects, such as a decrease in immune responses, stimulation of adipogenesis, and angiogenesis. On the other hand, resolvin E1 negatively regulates the cytokine production in macrophages by reducing the activation of MAPK1/3 and NF-kB pathways. Prostaglandin D2 receptor, also known as CRTH2, is a chemoattractant G-protein coupled receptor expressed on T helper type 2 cells that binds prostaglandin D2 (PGD2). PGD2 functions as a mast cell-derived mediator to trigger asthmatic responses and also causes vasodilation. PGD2 exerts its inflammatory effects by binding to two G-protein coupled receptors, the D-type prostanoid receptor (DP) and PD2R2 (CRTH2). PD2R2 couples to the G protein G(i/o) type which leads to a reduction in intracellular cAMP levels and an increase in intracellular calcium. GPR1 is an orphan receptor that can be activated by the leukocyte chemoattractant chemerin, thereby suggesting that some of the anti-inflammatory actions of chemerin may be mediated through GPR1.


Pssm-ID: 320105 [Multi-domain]  Cd Length: 274  Bit Score: 53.46  E-value: 4.37e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 221 AKRRQLLEAKRERKaaqTLAIITGAFVICWLPFFVMALTmslckecEIHTAVASLFLW---------LGYFNSTLNPVIY 291
Cdd:cd14974 194 LRRKRLAKSSKPLR---VLLAVVVAFFLCWLPYHVFALL-------ELVAAAGLPEVVllglplatgLAYFNSCLNPILY 263
                        90
                ....*....|.
gi 45647651 292 TIFNPEFRRAF 302
Cdd:cd14974 264 VFMGQDFRKRL 274
7tmA_LPAR2_Edg4 cd15342
lysophosphatidic acid receptor subtype 2 (LPAR2 or LPA2), also called Endothelial ...
237-302 4.48e-08

lysophosphatidic acid receptor subtype 2 (LPAR2 or LPA2), also called Endothelial differentiation gene 4 (Edg4), member of the class A family of seven-transmembrane G protein-coupled receptors; The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13).


Pssm-ID: 320464 [Multi-domain]  Cd Length: 274  Bit Score: 53.26  E-value: 4.48e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 237 QTLAIITGAFVICWLPFFVMALTMSL-CKECEIhTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15342 209 KTVVIILGAFVVCWTPGQVVLLLDGLgCESCNV-LAYEKYFLLLAEINSLVNPIVYSYRDKEMRKTF 274
7tmA_KiSS1R cd15095
KiSS1-derived peptide (kisspeptin) receptor, member of the class A family of ...
209-302 5.13e-08

KiSS1-derived peptide (kisspeptin) receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; The G protein-coupled KiSS1-derived peptide receptor (GPR54 or kisspeptin receptor) binds the peptide hormone kisspeptin (previously known as metastin), which encoded by the metastasis suppressor gene (KISS1) expressed in various endocrine and reproductive tissues. The KiSS1 receptor is coupled to G proteins of the G(q/11) family, which lead to activation of phospholipase C and increase of intracellular calcium. This signaling cascade plays an important role in reproduction by regulating the secretion of gonadotropin-releasing hormone.


Pssm-ID: 320223 [Multi-domain]  Cd Length: 288  Bit Score: 53.44  E-value: 5.13e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 209 VLASIANPHQKLAKRRQLLE---AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLW---LGYF 282
Cdd:cd15095 189 ILRRLWRRSVDGNNQSEQLSeraLRQKRKVTRMVIVVVVLFAICWLPNHVLNLWQRFDPNFPETYATYALKIAalcLSYA 268
                        90       100
                ....*....|....*....|
gi 45647651 283 NSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15095 269 NSAVNPFVYAFMGENFRKYF 288
7tmA_GPR84-like cd15210
G protein-coupled receptor 84 and similar proteins, member of the class A family of ...
230-302 6.24e-08

G protein-coupled receptor 84 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR84, also known as the inflammation-related G-Protein coupled receptor EX33, is a receptor for medium-chain free fatty acid (FFA) with carbon chain lengths of C9 to C14. Among these medium-chain FFAs, capric acid (C10:0), undecanoic acid (C11:0), and lauric acid (C12:0) are the most potent endogenous agonists of GPR84, whereas short-chain and long-chain saturated and unsaturated FFAs do not activate this receptor. GPR84 contains a [G/N]RY-motif instead of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of the rhodopsin-like class A receptors and important for efficient G protein-coupled signal transduction. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, which then activate the heterotrimeric G proteins. In the case of GPR84, activation of the receptor couples to a pertussis toxin sensitive G(i/o)-protein pathway. GPR84 knockout mice showed increased Th2 cytokine production including IL-4, IL-5, and IL-13 compared to wild-type mice. It has been also shown that activation of GPR84 augments lipopolysaccharide-stimulated IL-8 production in polymorphonuclear leukocytes and TNF-alpha production in macrophages, suggesting that GPR84 may function as a proinflammatory receptor.


Pssm-ID: 320338 [Multi-domain]  Cd Length: 254  Bit Score: 52.65  E-value: 6.24e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTaVASLFLWLgyfNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15210 186 REDRRLTRMMLVIFLCFLVCYLPITLVNVFDDEVAPPVLHI-IAYVLIWL---SSCINPIIYVAMNRQYRQAY 254
7tmA_Apelin_R cd15190
apelin receptor, member of the class A family of seven-transmembrane G protein-coupled ...
218-301 6.43e-08

apelin receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Apelin (APJ) receptor is a G protein-coupled receptor that binds the endogenous peptide ligands, apelin and Toddler/Elabela. APJ is an adipocyte-derived hormone that is ubiquitously expressed throughout the human body and Toddler/Elabela is a short secretory peptide that is required for normal cardiac development in zebrafish. Activation of APJ receptor plays key roles in diverse physiological processes including vasoconstriction and vasodilation, cardiac muscle contractility, angiogenesis, and regulation of water balance and food intake.


Pssm-ID: 341340 [Multi-domain]  Cd Length: 304  Bit Score: 53.23  E-value: 6.43e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQLLEAKRERKAAQTLAIIT---GAFVICWLPFFVMAlTMSLCKECEIHTAVASLFLWL----------GYFNS 284
Cdd:cd15190 208 RTVARHFSKLRRKEDKKKRRLLKIIItlvVTFALCWLPFHLVK-TLYALMYLGILPFSCGFDLFLmnahpyatclAYVNS 286
                        90
                ....*....|....*..
gi 45647651 285 TLNPVIYTIFNPEFRRA 301
Cdd:cd15190 287 CLNPFLYAFFDPRFRQQ 303
7tmA_RNL3R cd14976
relaxin-3 like peptide receptors, member of the class A family of seven-transmembrane G ...
223-302 7.04e-08

relaxin-3 like peptide receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This G protein-coupled receptor subfamily is composed of the relaxin-3 like peptide receptors, RNL3R1 and RNL3R2, and similar proteins. The relaxin-3 like peptide family includes relaxin-1, -2, -3, as well as insulin-like (INSL) peptides 3 to 6. RNL3/relaxin-3 and INSL5 are the endogenous ligands for RNL3R1 and RNL3R2, respectively. RNL3R1, also called GPCR135 or RXFP3, is predominantly expressed in the brain and is implicated in stress, anxiety, feeding, and metabolism. Insulin-like peptide 5 (INSL5), the endogenous ligand for RNL3R2 (also called GPCR142 or RXFP4), plays a role in fat and glucose metabolism. INSL5 is highly expressed in human rectal and colon tissues. Both RNL3R1 and RNL3R2 signal through G(i) protein and inhibit adenylate cyclase, thereby inhibit cAMP accumulation. RNL3R1 is shown to activate Erk1/2 signaling pathway.


Pssm-ID: 320107 [Multi-domain]  Cd Length: 290  Bit Score: 52.89  E-value: 7.04e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 223 RRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCK------ECEIHTAVASLF---LWLGYFNSTLNPVIYTI 293
Cdd:cd14976 202 RKRGGSKRRKSRVTKSVFIVVLSFFICWLPNQALSLWSALIKfddvpfSDAFFAFQTYAFpvaICLAHSNSCLNPVLYCL 281

                ....*....
gi 45647651 294 FNPEFRRAF 302
Cdd:cd14976 282 VRREFRDAL 290
7tmA_SSTR4 cd15973
somatostatin receptor type 4, member of the class A family of seven-transmembrane G ...
230-302 8.20e-08

somatostatin receptor type 4, member of the class A family of seven-transmembrane G protein-coupled receptors; G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. SSTR4 plays a critical role in mediating inflammation. Unlike other SSTRs, SSTR4 subtype is not detected in all pituitary adenomas while it is expressed in the normal human pituitary.


Pssm-ID: 320639 [Multi-domain]  Cd Length: 274  Bit Score: 52.55  E-value: 8.20e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKecEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15973 204 KSEKKITRMVLMVVTVFVICWMPFYVVQLLNLFLP--RLDATVNHASLILSYANSCANPILYGFLSDNFRRSF 274
7tmA_MCHR-like cd15088
melanin concentrating hormone receptor, member of the class A family of seven-transmembrane G ...
230-300 1.02e-07

melanin concentrating hormone receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Melanin-concentrating hormone receptor (MCHR) binds melanin concentrating hormone and is presumably involved in the neuronal regulation of food intake and energy homeostasis. Despite strong homology with somatostatin receptors, MCHR does not appear to bind somatostatin. Two MCHRs have been characterized in vertebrates, MCHR1 and MCHR2. MCHR1 is expressed in all mammals, whereas MCHR2 is only expressed in the higher order mammals, such as humans, primates, and dogs, and is not found in rodents. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320216 [Multi-domain]  Cd Length: 278  Bit Score: 52.45  E-value: 1.02e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMAL---TMSlckeceiHTAVASLFLW-----LGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15088 205 SRTKRVTKMVILIVVVFIVCWLPFHVVQLvnlAMN-------RPTLAFEVAYflsicLGYANSCLNPFVYILVSENFRK 276
7tmA_NPYR-like cd15203
neuropeptide Y receptors and related proteins, member of the class A family of ...
219-302 1.12e-07

neuropeptide Y receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; NPY is a 36-amino acid peptide neurotransmitter with a C-terminal tyrosine amide residue that is widely distributed in the brain and the autonomic nervous system of many mammalian species. NPY exerts its functions through five, G-protein coupled receptor subtypes including NPY1R, NPY2R, NPY4R, NPY5R, and NPY6R; however, NPY6R is not functional in humans. NYP receptors are also activated by its two other family members, peptide YY (PYY) and pancreatic polypeptide (PP). They typically couple to Gi or Go proteins, which leads to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels, and are involved in diverse physiological roles including appetite regulation, circadian rhythm, and anxiety. Also included in this subgroup is prolactin-releasing peptide (PrRP) receptor (previously known as GPR10), which is activated by its endogenous ligand PrRP, a neuropeptide possessing C-terminal Arg-Phe-amide motif. There are two active isoforms of PrRP in mammals: one consists of 20 amino acid residues (PrRP-20) and the other consists of 31 amino acid residues (PrRP-31). PrRP receptor shows significant sequence homology to the NPY receptors, and a micromolar level of NPY can bind and completely inhibit the PrRP-evoked intracellular calcium response in PrRP receptor-expressing cells, suggesting that the PrRP receptor shares a common ancestor with the NPY receptors.


Pssm-ID: 320331 [Multi-domain]  Cd Length: 293  Bit Score: 52.22  E-value: 1.12e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 219 KLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEI----HTAVASLFLWLGYFNSTLNPVIYTIF 294
Cdd:cd15203 206 TLSSRRRRSELRRKRRTNRLLIAMVVVFAVCWLPLNLFNLLRDFEPLPQIdgrhFYLIFLICHLIAMSSACVNPLLYGWL 285

                ....*...
gi 45647651 295 NPEFRRAF 302
Cdd:cd15203 286 NDNFRKEF 293
7tmA_MC1R cd15351
melanocortin receptor subtype 1, member of the class A family of seven-transmembrane G ...
212-300 1.24e-07

melanocortin receptor subtype 1, member of the class A family of seven-transmembrane G protein-coupled receptors; The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function.


Pssm-ID: 320473 [Multi-domain]  Cd Length: 271  Bit Score: 52.10  E-value: 1.24e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 212 SIANPHQKLAKRRQLLEAKrerkAAQTLAIITGAFVICWLPFFVMALTMSLCKE---CEIHTAVASLFLWLGYFNSTLNP 288
Cdd:cd15351 182 SISSQQRRQCPHQQTASLK----GAITLTILLGIFFLCWGPFFLHLTLIVTCPThpfCLCYFKYFNLFLILIICNSIIDP 257
                        90
                ....*....|..
gi 45647651 289 VIYTIFNPEFRR 300
Cdd:cd15351 258 LIYAFRSQELRK 269
7tmA_Vasopressin-like cd14986
vasopressin receptors and its related G protein-coupled receptors, member of the class A ...
223-299 1.44e-07

vasopressin receptors and its related G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Members of this group form a subfamily within the class A G-protein coupled receptors (GPCRs), which includes the vasopressin and oxytocin receptors, the gonadotropin-releasing hormone receptors (GnRHRs), the neuropeptide S receptor (NPSR), and orphan GPR150. These receptors share significant sequence homology with each other, suggesting that they have a common evolutionary origin. Vasopressin, also known as arginine vasopressin or anti-diuretic hormone, is a neuropeptide synthesized in the hypothalamus. The actions of vasopressin are mediated by the interaction of this hormone with three tissue-specific subtypes: V1AR, V1BR, and V2R. Although vasopressin differs from oxytocin by only two amino acids, they have divergent physiological functions. Vasopressin is involved in regulating osmotic and cardiovascular homeostasis, whereas oxytocin plays an important role in the uterus during childbirth and in lactation. GnRHR, also known as luteinizing hormone releasing hormone receptor (LHRHR), plays an central role in vertebrate reproductive function; its activation by binding to GnRH leads to the release of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland. Neuropeptide S (NPS) promotes arousal and anxiolytic-like effects by activating its cognate receptor NPSR. NPSR has also been associated with asthma and allergy. GPR150 is an orphan receptor closely related to the oxytocin and vasopressin receptors.


Pssm-ID: 320117 [Multi-domain]  Cd Length: 295  Bit Score: 51.99  E-value: 1.44e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 223 RRQLLEAKRERKAAQTLAIITgAFVICWLPFFVMAL--TMSLCKECEiHTAVASLFLwLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd14986 217 RVSLISRAKIKTIKMTLVIIL-AFILCWTPYFIVQLldVYAGMQQLE-NDAYVVSET-LASLNSALNPLIYGFFSSHLS 292
7tmA_GPRnna14-like cd15001
GPRnna14 and related proteins, member of the class A family of seven-transmembrane G ...
229-302 1.55e-07

GPRnna14 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes the orphan G-protein coupled receptor GPRnna14 found in body louse (Pediculus humanus humanus) as well as its closely related proteins of unknown function. These receptors are members of the class A rhodopsin-like G-protein coupled receptors. As an obligatory parasite of humans, the body louse is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. GPRnna14 shares significant sequence similarity with the members of the neurotensin receptor family. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320132 [Multi-domain]  Cd Length: 266  Bit Score: 51.51  E-value: 1.55e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 229 AKRERKAA-QTLAIITGAFVICWLPFFVMALTMSLCKECEIHT-AVASL---FLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15001 188 ARDTRKQViKMLISVVVLFAVCWGPLLIDNLLVSFDVISTLHTqALKYMriaFHLLSYANSCINPIIYAFMSKNFRSSF 266
7tmA_GnRHR_vertebrate cd15383
vertebrate gonadotropin-releasing hormone receptors, member of the class A family of ...
240-302 1.62e-07

vertebrate gonadotropin-releasing hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; GnRHR, also known as luteinizing hormone releasing hormone receptor (LHRHR), plays an central role in vertebrate reproductive function; its activation by binding to GnRH leads to the release of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland. GnRHR is expressed predominantly in the gonadotrope membrane of the anterior pituitary as well as found in numerous extrapituitary tissues including lymphocytes, breast, ovary, prostate, and cancer cell lines. There are at least two types of GnRH receptors, GnRHR1 and GnRHR2, which couple primarily to G proteins of the Gq/11 family. GnRHR is closely related to the adipokinetic hormone receptor (AKH), which binds to a lipid-mobilizing hormone that is involved in control of insect metabolism. They share a common ancestor and are members of the class A of the seven-transmembrane, G-protein coupled receptor (GPCR) superfamily.


Pssm-ID: 320505 [Multi-domain]  Cd Length: 295  Bit Score: 51.98  E-value: 1.62e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 240 AIITGAFVICWLPFFVMALTMSLCKECEIHTAVAS----LFLWlGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15383 230 IVIVSSFIVCWTPYYLLGLWYWFSPEMLEQTVPESlshiLFLF-GLLNACLDPLIYGLFTISFRRGL 295
7tmA_QRFPR cd15205
pyroglutamylated RFamide peptide receptor, member of the class A family of seven-transmembrane ...
204-302 1.76e-07

pyroglutamylated RFamide peptide receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; 26RFa, also known as QRFP (Pyroglutamylated RFamide peptide), is a 26-amino acid residue peptide that belongs to a family of neuropeptides containing an Arg-Phe-NH2 (RFamide) motif at its C-terminus. 26Rfa/QRFP exerts similar orexigenic activity including the regulation of feeding behavior in mammals. It is the ligand for G-protein coupled receptor 103 (GPR103), which is predominantly expressed in paraventricular (PVN) and ventromedial (VMH) nuclei of the hypothalamus. GPR103 shares significant protein sequence homology with orexin receptors (OX1R and OX2R), which have recently shown to produce a neuroprotective effect in Alzheimer's disease by forming a functional heterodimer with GPR103.


Pssm-ID: 320333 [Multi-domain]  Cd Length: 298  Bit Score: 51.71  E-value: 1.76e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 204 VGLGGVLASIanPHQKLAKrrqllEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLW----- 278
Cdd:cd15205 202 VGDASVLQTI--HGIEMSK-----ISRKKKRAVKMMVTVVLLFAVCWAPFHVVHMMIEYSNLENKYDGVTIKLIFaivql 274
                        90       100
                ....*....|....*....|....
gi 45647651 279 LGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15205 275 IGFSNSFNNPIVYAFMNENFKKNF 298
7tmA_MC4R cd15353
melanocortin receptor subtype 4, member of the class A family of seven-transmembrane G ...
234-302 1.92e-07

melanocortin receptor subtype 4, member of the class A family of seven-transmembrane G protein-coupled receptors; The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function.


Pssm-ID: 320475 [Multi-domain]  Cd Length: 269  Bit Score: 51.45  E-value: 1.92e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSLCKE---CEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15353 198 KGAITLTILLGVFVVCWAPFFLHLIFYISCPRnpyCVCFMSHFNMYLILIMCNSVIDPLIYAFRSQELRKTF 269
7tmA_GPR12 cd15961
G protein-coupled receptor 12, member of the class A family of seven-transmembrane G ...
233-302 1.97e-07

G protein-coupled receptor 12, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR3, GPR6, and GPR12 form a subfamily of constitutively active G-protein coupled receptors with dual coupling to G(s) and G(i) proteins. These three orphan receptors are involved in the regulation of cell proliferation and survival, neurite outgrowth, cell clustering, and maintenance of meiotic prophase arrest. They constitutively activate adenylate cyclase to a similar degree as that seen with fully activated G(s)-coupled receptors, and are also able to constitutively activate inhibitory G(i/o) proteins. Lysophospholipids such as sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine have been detected as the high-affinity ligands for Gpr6 and Gpr12, respectively, which show high sequence homology with GPR3.


Pssm-ID: 320627 [Multi-domain]  Cd Length: 268  Bit Score: 51.57  E-value: 1.97e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 233 RKAAQTLAIITGAFVICWLPFFVMALTMSLCKEcEIHTAVAslfLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15961 203 RKGVSTLAIILGTFAACWMPFTLYSLIADYTYP-SIYTYAT---LLPATYNSIINPVIYAFRNQEIQKAL 268
7tmA_NPFFR1 cd15981
neuropeptide FF receptor 1, member of the class A family of seven-transmembrane G ...
211-302 2.18e-07

neuropeptide FF receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors; Neuropeptide FF (NPFF) is a mammalian octapeptide that belongs to a family of neuropeptides containing an RF-amide motif at their C-terminus that have been implicated in a wide range of physiological functions in the brain including pain sensitivity, insulin release, food intake, memory, blood pressure, and opioid-induced tolerance and hyperalgesia. The effects of these peptides are mediated through neuropeptide FF1 and FF2 receptors (NPFF1-R and NPFF2-R) which are predominantly expressed in the brain. NPFF induces pro-nociceptive effects, mainly through the NPFF1-R, and anti-nociceptive effects, mainly through the NPFF2-R. NPFF has been shown to inhibit adenylate cyclase via the Gi protein coupled to NPFF1-R.


Pssm-ID: 320647 [Multi-domain]  Cd Length: 299  Bit Score: 51.36  E-value: 2.18e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 211 ASIANPHQKLAKRRQLleAKRERKAAQTLAIITGAFVICWLPFFVMALTMSL--CKECEIHTAVASLF---LWLGYFNST 285
Cdd:cd15981 205 APIRGSQGEEEEGRRV--SKRKIKVINMLIIVALFFTLSWLPLWTLMLLTDYghLSEDQLNLVTVYVFpfaHWLAFFNSS 282
                        90
                ....*....|....*..
gi 45647651 286 LNPVIYTIFNPEFRRAF 302
Cdd:cd15981 283 VNPIIYGYFNENFRRGF 299
7tmA_OXER1 cd15200
oxoeicosanoid receptor 1, member of the class A family of seven-transmembrane G ...
206-302 2.27e-07

oxoeicosanoid receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors; OXER1, also called GPR170, is a receptor for eicosanoids and polyunsaturated fatty acids such as 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-OXO-ETE), 5(S)-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5(S)-HPETE) and arachidonic acid. OXER1 is a member of the class A family of seven-transmembrane G-protein coupled receptors and appears to be coupled to the G(i/o) protein. The receptor is expressed in various tissues except brain. Phylogenetic analysis showed that GPR31 and OXER1 are the most closely related receptors to the hydroxycarboxylic acid receptor family (HCARs). OXER1, like GPR31, activates the ERK1/2 (MAPK3/MAPK1) pathway of intracellular signaling, but unlike GPR31, does cause increase in the cytosolic calcium level.


Pssm-ID: 320328 [Multi-domain]  Cd Length: 276  Bit Score: 51.31  E-value: 2.27e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 206 LGGVLASIANPHQKLaKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKE---CEIHTAVASLF---LWL 279
Cdd:cd15200 175 LGIILFCIFSIILTL-KQRKLAKQAGPQRAVKVLAVIVLVYTVCFLPSILFALASLVAFKvsqCRSLDLCTQLFhgsLAF 253
                        90       100
                ....*....|....*....|...
gi 45647651 280 GYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15200 254 TYLNSALDPVLYCFSSPSFLNQS 276
7tmA_SSTR2 cd15971
somatostatin receptor type 2, member of the class A family of seven-transmembrane G ...
230-302 2.45e-07

somatostatin receptor type 2, member of the class A family of seven-transmembrane G protein-coupled receptors; G protein-coupled somatostatin receptors (SSTRs), which display strong sequence similarity with opioid receptors, binds somatostatin, a polypeptide hormone that regulates a wide variety of physiological such as neurotransmission, endocrine secretion, cell proliferation, and smooth muscle contractility. SSTRs are composed of five distinct subtypes (SSTR1-5) which are encoded by separate genes on different chromosomes. SSTR2 plays critical roles in growth hormone secretion, glucagon secretion, and immune responses. SSTR2 is expressed in the normal human pituitary and in nearly all pituitary growth hormone adenomas.


Pssm-ID: 320637 [Multi-domain]  Cd Length: 279  Bit Score: 51.38  E-value: 2.45e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTmSLCKECEIHTAVASLFLW---LGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15971 205 KSEKKVTRMVSIVVAVFVFCWLPFYIFNVS-SVSVSISPTPGLKGMFDFvvvLSYANSCANPILYAFLSDNFKKSF 279
7tmA_LPAR3_Edg7 cd15343
lysophosphatidic acid receptor subtype 3 (LPAR3 or LPA3), also called endothelial ...
234-302 2.67e-07

lysophosphatidic acid receptor subtype 3 (LPAR3 or LPA3), also called endothelial differentiation gene 7 (Edg7), member of the class A family of seven-transmembrane G protein-coupled receptors; The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13).


Pssm-ID: 320465 [Multi-domain]  Cd Length: 274  Bit Score: 51.03  E-value: 2.67e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSL-CKECEIHTaVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15343 206 KLMKTVMTVLGAFVICWTPGLVVLLLDGLnCTRCGVQH-VKRWFLLLALLNSVMNPIIYSYKDEEMWGTM 274
7tmA_Pinopsin cd15084
non-visual pinopsins, member of the class A family of seven-transmembrane G protein-coupled ...
232-299 2.69e-07

non-visual pinopsins, member of the class A family of seven-transmembrane G protein-coupled receptors; Pinopsins are found in the pineal organ of birds, reptiles and amphibians, but are absent from teleosts and mammals. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extra-retinal tissues and/or in non-rod, non-cone retinal cells. They are thought to be involved in light-dependent physiological functions such as photo-entrainment of circadian rhythm, photoperiodicity and body color change. Pinopsins belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops.


Pssm-ID: 320212 [Multi-domain]  Cd Length: 295  Bit Score: 51.02  E-value: 2.69e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 45647651 232 ERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLflwLGYFNST---LNPVIYTIFNPEFR 299
Cdd:cd15084 218 EKEVTRMVIAMVMAFLICWLPYATFAMVVATNKDVVIQPTLASL---PSYFSKTatvYNPIIYVFMNKQFR 285
7tmA_HCAR1-3 cd15201
hydroxycarboxylic acid receptors, member of the class A family of seven-transmembrane G ...
222-302 2.75e-07

hydroxycarboxylic acid receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Hydroxycarboxylic acid receptor (HCAR) subfamily, a member of the class A G-protein coupled receptors (GPCRs), contains three receptor subtypes: HCAR1, HCAR2, and HCAR3. The endogenous ligand of HCAR1 (also known as lactate receptor 1, GPR104, or GPR81) is L-lactic acid. The endogenous ligands of HCAR2 (also known as niacin receptor 1, GPR109A, or nicotinic acid receptor) and HCAR3 (also known as niacin receptor 2 or GPR109B) are 3-hydroxybutyric acid and 3-hydroxyoctanoic acid, respectively. Because nicotinic acid is capable of stimulating HCAR2 at higher concentrations only (in the range of sub-micromolar concentration), it is unlikely that nicotinic acts as a physiological ligand of HCAR2. All three receptors are expressed in adipocytes and mediate anti-lipolytic effects in fat cells through G(i) type G protein-dependent inhibition of adenylate cyclase.


Pssm-ID: 320329 [Multi-domain]  Cd Length: 281  Bit Score: 51.21  E-value: 2.75e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQLLEAKRERKAAQTLAIITGAFVICWLP-----FFVMALTMSLCKECEIHTAVASLF---LWLGYFNSTLNPVIYTI 293
Cdd:cd15201 193 RGRQLDRHAKIKRAVQFIMVVAIVFIICFLPsnvtrIAIWILKHTSNEDCQYYRSVDLAFyitISFTYFNSMLDPVVYYF 272

                ....*....
gi 45647651 294 FNPEFRRAF 302
Cdd:cd15201 273 SSPSFKNFY 281
7tmA_SREB-like cd15005
super conserved receptor expressed in brain and related proteins, member of the class A family ...
201-302 2.90e-07

super conserved receptor expressed in brain and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; The SREB (super conserved receptor expressed in brain) subfamily consists of at least three members, named SREB1 (GPR27), SREB2 (GPR85), and SREB3 (GPR173). They are very highly conserved G protein-coupled receptors throughout vertebrate evolution, however no endogenous ligands have yet been identified. SREB2 is greatly expressed in brain regions involved in psychiatric disorders and cognition, such as the hippocampal dentate gyrus. Genetic studies in both humans and mice have shown that SREB2 influences brain size and negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent cognitive function, all of which are suggesting a potential link between SREB2 and schizophrenia. All three SREB genes are highly expressed in differentiated hippocampal neural stem cells. Furthermore, all GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320134 [Multi-domain]  Cd Length: 329  Bit Score: 51.30  E-value: 2.90e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 201 NAGVGLGG----VLASIANPHQklAKRRQLL--EAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVAS 274
Cdd:cd15005 224 TAGFGRGPtpptLLGIRQAFHS--GARRLLVldEFKMEKRLTRMFYAITLLFLLLWSPYIVACYIRVFVRGYAVPQGFLT 301
                        90       100
                ....*....|....*....|....*...
gi 45647651 275 LFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15005 302 AAVWMTFAQAGVNPIVCFFFNRELRKCL 329
7tmA_Gal1_R cd15098
galanin receptor subtype 1, member of the class A family of seven-transmembrane G ...
217-302 3.21e-07

galanin receptor subtype 1, member of the class A family of seven-transmembrane G protein-coupled receptors; The G protein-coupled galanin receptors bind galanin, a neuropeptide that is widely expressed in the brain, peripheral tissues, and endocrine glands. Three receptors subtypes have been so far identified: GAL1, GAL2, and GAL3. The specific functions of each subtype remains mostly unknown, although galanin is thought to be involved in a variety of neuronal functions such as hormone release and food intake. Galanin is implicated in numerous neurological and psychiatric diseases including Alzheimer's disease, depression, eating disorders, epilepsy and stroke, among many others.


Pssm-ID: 320226 [Multi-domain]  Cd Length: 282  Bit Score: 50.88  E-value: 3.21e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 217 HQKLAKRRQLLEAKReRKAAQTLAIITGAFVICWLPFFVMAL-----TMSLCKECEIHTAVASLflwLGYFNSTLNPVIY 291
Cdd:cd15098 196 HKKLKNMSKKSERSK-KKTAQTVLVVVVVFGISWLPHHIIHLwvefgDFPLTQASFVLRITAHC---LAYANSCVNPIIY 271
                        90
                ....*....|.
gi 45647651 292 TIFNPEFRRAF 302
Cdd:cd15098 272 AFLSENFRKAY 282
7tmA_NPFFR cd15207
neuropeptide FF receptors, member of the class A family of seven-transmembrane G ...
207-302 3.48e-07

neuropeptide FF receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Neuropeptide FF (NPFF) is a mammalian octapeptide that belongs to a family of neuropeptides containing an RF-amide motif at their C-terminus that have been implicated in a wide range of physiological functions in the brain including pain sensitivity, insulin release, food intake, memory, blood pressure, and opioid-induced tolerance and hyperalgesia. The effects of these peptides are mediated through neuropeptide FF1 and FF2 receptors (NPFF1-R and NPFF2-R) which are predominantly expressed in the brain. NPFF induces pro-nociceptive effects, mainly through the NPFF1-R, and anti-nociceptive effects, mainly through the NPFF2-R. NPFF has been shown to inhibit adenylate cyclase via the Gi protein coupled to NPFF1-R.


Pssm-ID: 320335 [Multi-domain]  Cd Length: 291  Bit Score: 50.70  E-value: 3.48e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 207 GGVLASIANPHQKLAKRRQLLeakrerkaaQTLAIITGAFVICWLPFFVmaLTM-----SLCKEcEIHTAVASLF---LW 278
Cdd:cd15207 200 GGGSASREAQAAVSKKKVRVI---------KMLIVVVVLFALSWLPLHT--VTMlddfgNLSPN-QREVLYVYIYpiaHW 267
                        90       100
                ....*....|....*....|....
gi 45647651 279 LGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15207 268 LAYFNSCVNPIVYGYFNRNFRKGF 291
7tmA_Galanin_R-like cd14971
galanin receptor and related proteins, member of the class A family of seven-transmembrane G ...
219-302 3.64e-07

galanin receptor and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This subfamily includes G-protein coupled galanin receptors, kisspeptin receptor and allatostatin-A receptor (AstA-R) in insects. These receptors, which are members of the class A of seven transmembrane GPCRs, share a high degree of sequence homology among themselves. The galanin receptors bind galanin, a neuropeptide that is widely expressed in the brain, peripheral tissues, and endocrine glands. Galanin is implicated in numerous neurological and psychiatric diseases including Alzheimer's disease, eating disorders, and epilepsy, among many others. KiSS1-derived peptide receptor (also known as GPR54 or kisspeptin receptor) binds the peptide hormone kisspeptin (metastin), which encoded by the metastasis suppressor gene (KISS1) expressed in various endocrine and reproductive tissues. AstA-R is a G-protein coupled receptor that binds allatostatin A. Three distinct types of allatostatin have been identified in the insects and crustaceans: AstA, AstB, and AstC. They both inhibit the biosynthesis of juvenile hormone and exert an inhibitory influence on food intake. Therefore, allatostatins are considered as potential targets for insect control.


Pssm-ID: 320102 [Multi-domain]  Cd Length: 281  Bit Score: 50.54  E-value: 3.64e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 219 KLAKRRQLLEAKR--ERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFL--WLGYFNSTLNPVIYTIF 294
Cdd:cd14971 194 RVAVRPVLSEGSRraKRKVTRLVLVVVVLFAACWGPIHAILLLVALGPFPLTYATYALRIWahCLAYSNSAVNPVLYAFL 273

                ....*...
gi 45647651 295 NPEFRRAF 302
Cdd:cd14971 274 SEHFRKAF 281
7tmA_MC5R cd15354
melanocortin receptor subtype 5, member of the class A family of seven-transmembrane G ...
234-302 3.95e-07

melanocortin receptor subtype 5, member of the class A family of seven-transmembrane G protein-coupled receptors; The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function.


Pssm-ID: 320476 [Multi-domain]  Cd Length: 270  Bit Score: 50.71  E-value: 3.95e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSLCKE---CEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15354 199 KGAVTLTILLGIFIVCWAPFFLHLILMISCPQnlyCVCFMSHFNMYLILIMCNSVIDPLIYAFRSQEMRKTF 270
7tmA_FPR-like cd15117
N-formyl peptide receptors, member of the class A family of seven-transmembrane G ...
204-302 4.17e-07

N-formyl peptide receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The formyl peptide receptors (FPRs) are chemoattractant GPCRs that involved in mediating immune responses to infection. They are expressed at elevated levels on polymorphonuclear and mononuclear phagocytes. FPRs bind N-formyl peptides, which are derived from the mitochondrial proteins of ruptured host cells or invading pathogens. Activation of FPRs by N-formyl peptides such as N-formyl-Met-Leu-Phe (FMLP) triggers a signaling cascade that stimulates neutrophil accumulation, phagocytosis and superoxide production. These responses are mediated through a pertussis toxin-sensitive G(i) protein that activates a PLC-IP3-calcium signaling pathway. While FPRs are involved in host defense responses to bacterial infection, they can also suppress the immune system under certain conditions. Yet, the physiological role of the FPR family is not fully understood.


Pssm-ID: 320245 [Multi-domain]  Cd Length: 288  Bit Score: 50.50  E-value: 4.17e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 204 VGLGGVLASIANPHQKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALtMSLCKECEIHTAVASLFLW----- 278
Cdd:cd15117 184 LGFLVPLVIIGGCYGLIAARLWREGWVHSSRPFRVLTAVVAAFFLCWFPFHLVSL-LELVVILNQKEDLNPLLILllpls 262
                        90       100
                ....*....|....*....|....*.
gi 45647651 279 --LGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15117 263 ssLACVNSCLNPLLYVFVGRDFRERL 288
7tmA_NTSR-like cd14979
neurotensin receptors and related G protein-coupled receptors, member of the class A family of ...
218-302 4.47e-07

neurotensin receptors and related G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This subfamily includes the neurotensin receptors and related G-protein coupled receptors, including neuromedin U receptors, growth hormone secretagogue receptor, motilin receptor, the putative GPR39 and the capa receptors from insects. These receptors all bind peptide hormones with diverse physiological effects. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320110 [Multi-domain]  Cd Length: 300  Bit Score: 50.43  E-value: 4.47e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLW-----LGYFNSTLNPVIYT 292
Cdd:cd14979 211 QGTRNVELSLSQQARRQVVKMLGAVVIAFFVCWLPFHAQRLMFSYASKEDTFLFDFYQYLYpisgiLFYLSSAINPILYN 290
                        90
                ....*....|
gi 45647651 293 IFNPEFRRAF 302
Cdd:cd14979 291 LMSSRFRVAF 300
7tmA_TACR-like cd15202
tachykinin receptors and related receptors, member of the class A family of ...
229-302 4.53e-07

tachykinin receptors and related receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes the neurokinin/tachykinin receptors and its closely related receptors such as orphan GPR83 and leucokinin-like peptide receptor. The tachykinins are widely distributed throughout the mammalian central and peripheral nervous systems and act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. SP is a high-affinity endogenous ligand for NK1R, which interacts with the Gq protein and activates phospholipase C, leading to elevation of intracellular calcium. NK2R is a high-affinity receptor for NKA, the tachykinin neuropeptide substance K. SP and NKA are found in the enteric nervous system and mediate in the regulation of gastrointestinal motility, secretion, vascular permeability, and pain perception. NK3R is activated by its high-affinity ligand, NKB, which is primarily involved in the central nervous system and plays a critical role in the regulation of gonadotropin hormone release and the onset of puberty.


Pssm-ID: 320330 [Multi-domain]  Cd Length: 288  Bit Score: 50.58  E-value: 4.53e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHT--AVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15202 213 RRKKKKVIKMLMVVVVLFALCWLPFNIYVLLLSSKPDYLIKTinAVYFAFHWLAMSSTCYNPFIYCWLNERFRIEF 288
7tmA_GHSR-like cd15928
growth hormone secretagogue receptor, motilin receptor, and related proteins, member of the ...
218-301 5.06e-07

growth hormone secretagogue receptor, motilin receptor, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This subfamily includes growth hormone secretagogue receptor (GHSR or ghrelin receptor), motilin receptor (also called GPR38), and related proteins. Both GHSR and GPR38 bind peptide hormones. Ghrelin, the endogenous ligand for GHSR, is an acylated 28-amino acid peptide hormone produced by ghrelin cells in the gastrointestinal tract. Ghrelin is also called the hunger hormone and is involved in the regulation of growth hormone release, appetite and feeding, gut motility, lipid and glucose metabolism, and energy balance. Motilin, the ligand for GPR38, is a 22 amino acid peptide hormone expressed throughout the gastrointestinal tract and stimulates contraction of gut smooth muscle. It is involved in the regulation of digestive tract motility.


Pssm-ID: 320594 [Multi-domain]  Cd Length: 288  Bit Score: 50.18  E-value: 5.06e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQLLEA----KRERKAAQT---LAIITGAFVICWLPFFVMALTMSLCKEC-----EIHTAVASLFLWLGYFNST 285
Cdd:cd15928 192 RALWDRRQRSRTagasRRDNNHRQTvrmLAVIVLAFVLCWLPFHVGRVIFNHSRAStkhlhYVSQYFNLVSFVLFYLSAA 271
                        90
                ....*....|....*.
gi 45647651 286 LNPVIYTIFNPEFRRA 301
Cdd:cd15928 272 INPILYNLMSKRYRYA 287
7tmA_TACR cd15390
neurokinin receptors (or tachykinin receptors), member of the class A family of ...
223-302 5.08e-07

neurokinin receptors (or tachykinin receptors), member of the class A family of seven-transmembrane G protein-coupled receptors; This group represents G-protein coupled receptors for a variety of neuropeptides of the tachykinin (TK) family. The tachykinins are widely distributed throughout the mammalian central and peripheral nervous systems and act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. SP is a high-affinity endogenous ligand for NK1R, which interacts with the Gq protein and activates phospholipase C, leading to elevation of intracellular calcium. NK2R is a high-affinity receptor for NKA, the tachykinin neuropeptide substance K. SP and NKA are found in the enteric nervous system and mediate in the regulation of gastrointestinal motility, secretion, vascular permeability, and pain perception. NK3R is activated by its high-affinity ligand, NKB, which is primarily involved in the central nervous system and plays a critical role in the regulation of gonadotropin hormone release and the onset of puberty.


Pssm-ID: 320512 [Multi-domain]  Cd Length: 289  Bit Score: 50.37  E-value: 5.08e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 223 RRQLLEAKRERKAAQTLAIITGAFVICWLP---FFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15390 207 PRQLESVRAKRKVVKMMIVVVVIFAICWLPyhlYFILTYLYPDINSWKYIQQIYLAIYWLAMSNSMYNPIIYCWMNKRFR 286

                ...
gi 45647651 300 RAF 302
Cdd:cd15390 287 YGF 289
7tmA_Bradykinin_R cd15189
bradykinin receptors, member of the class A family of seven-transmembrane G protein-coupled ...
218-300 5.33e-07

bradykinin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The bradykinin receptor family is a group of the seven transmembrane G-protein coupled receptors, whose endogenous ligand is the pro-inflammatory nonapeptide bradykinin that mediates various vascular and pain responses. Two major bradykinin receptor subtypes, B1 and B2, have been identified based on their pharmacological properties. The B1 receptor is rapidly induced by tissue injury and inflammation, whereas the B2 receptor is ubiquitously expressed on many tissue types. Both receptors contain three consensus sites for N-linked glycosylation in extracellular domains and couple to G(q) protein to activate phospholipase C, leading to phosphoinositide hydrolysis and intracellular calcium mobilization. They can also interact with G(i) protein to inhibit adenylate cyclase and activate the MAPK (mitogen-activated protein kinase) pathways.


Pssm-ID: 320317 [Multi-domain]  Cd Length: 284  Bit Score: 50.16  E-value: 5.33e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQL--LEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCK-----ECEIHTAV---ASLFLWLGYFNSTLN 287
Cdd:cd15189 190 QALRTREEStrCEDRNDSKATALVLAVTLLFLVCWGPYHFFTFLDFLFDvgvldECFWEHFIdigLQLAVFLAFSNSCLN 269
                        90
                ....*....|...
gi 45647651 288 PVIYTIFNPEFRR 300
Cdd:cd15189 270 PVLYVFVGRYFRR 282
7tmA_purinoceptor-like cd14982
purinoceptor and its related proteins, member of the class A family of seven-transmembrane G ...
218-300 5.93e-07

purinoceptor and its related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; Members of this subfamily include lysophosphatidic acid receptor, P2 purinoceptor, protease-activated receptor, platelet-activating factor receptor, Epstein-Barr virus induced gene 2, proton-sensing G protein-coupled receptors, GPR35, and GPR55, among others. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 341318 [Multi-domain]  Cd Length: 283  Bit Score: 49.96  E-value: 5.93e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRR-QLLEAKRERKAAQTLAIITGAFVICWLPF-FVMALTMSLCKECEIH-TAVASLF------LWLGYFNSTLNP 288
Cdd:cd14982 190 RALRRRSkQSQKSVRKRKALRMILIVLAVFLVCFLPYhVTRILYLLVRLSFIADcSARNSLYkayritLCLASLNSCLDP 269
                        90
                ....*....|..
gi 45647651 289 VIYTIFNPEFRR 300
Cdd:cd14982 270 LIYYFLSKTFRK 281
7tmA_NKR_NK3R cd16003
neuromedin-K receptor, member of the class A family of seven-transmembrane G protein-coupled ...
230-302 6.52e-07

neuromedin-K receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; The neuromedin-K receptor (NKR), also known as tachykinin receptor 3 (TACR3) or neurokinin B receptor or NK3R, is a G-protein coupled receptor that specifically binds to neurokinin B. The tachykinins (TKs) act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. NK3R is activated by its high-affinity ligand, NKB, which is primarily involved in the central nervous system and plays a critical role in the regulation of gonadotropin hormone release and the onset of puberty.


Pssm-ID: 320669 [Multi-domain]  Cd Length: 282  Bit Score: 49.93  E-value: 6.52e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 230 KRERKAAQTLAIITGAFVICWLP----FFVMALTMSLCKECEIHTAVASLFlWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd16003 207 RAKRKVVKMMIIVVLTFAICWLPyhiyFIVTGLYQQLNRWKYIQQVYLASF-WLAMSSTMYNPIIYCCLNKRFRAGF 282
7tmA_RNL3R2 cd15925
relaxin-3 receptor 2 (RNL3R2), member of the class A family of seven-transmembrane G ...
210-301 6.63e-07

relaxin-3 receptor 2 (RNL3R2), member of the class A family of seven-transmembrane G protein-coupled receptors; The G protein-coupled receptor RNL3R2 is also known as GPR100, GPR142, and relaxin family peptide receptor 4 (RXFP4). Insulin-like peptide 5 (INSL5) is an endogenous ligand for RNL3R2 and plays a role in fat and glucose metabolism. INSL5 is highly expressed in human rectal and colon tissues. RNL3R2 signals through G(i) protein and inhibit adenylate cyclase, thereby inhibit cAMP accumulation.


Pssm-ID: 320591 [Multi-domain]  Cd Length: 283  Bit Score: 49.87  E-value: 6.63e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 210 LASIANPHQKLAKRRQlleakRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKE---------CEIHTAVASLFLWLG 280
Cdd:cd15925 187 LLSFLQQHKVNQNNRQ-----RQSVIARSVRLVVASFFLCWFPNHVVTFWGVLVKFravpwnstfYFIHTYVFPVTTCLA 261
                        90       100
                ....*....|....*....|.
gi 45647651 281 YFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15925 262 HSNSCLNPVLYCLMRREFRQA 282
7tmA_C5aR cd15114
complement component 5a anaphylatoxin chemotactic receptors, member of the class A family of ...
205-302 6.95e-07

complement component 5a anaphylatoxin chemotactic receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The anaphylatoxin receptors are a group of G-protein coupled receptors which bind anaphylatoxins; members of this group include C3a receptors and C5a receptors. Anaphylatoxins are also known as complement peptides (C3a, C4a and C5a) that are produced from the activation of the complement system cascade. These complement anaphylatoxins can trigger degranulation of endothelial cells, mast cells, or phagocytes, which induce a local inflammatory response and stimulate smooth muscle cell contraction, histamine release, and increased vascular permeability. They are potent mediators involved in chemotaxis, inflammation, and generation of cytotoxic oxygen-derived free radicals. In humans, a single receptor for C3a (C3AR1) and two receptors for C5a (C5AR1 and C5AR2, also known as C5L2 or GPR77) have been identified, but there is no known receptor for C4a.


Pssm-ID: 320242 [Multi-domain]  Cd Length: 274  Bit Score: 49.71  E-value: 6.95e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 205 GLGGVLASIANPHQKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVA----SLFLWLG 280
Cdd:cd15114 173 GFLGPLVVIASCHGVLLVRTWSRRRQKSRRTLKVVTAVVVGFFLCWTPYHVVGLIIAASAPNSRLLANAlkadPLTVSLA 252
                        90       100
                ....*....|....*....|..
gi 45647651 281 YFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15114 253 YINSCLNPIIYVVAGRGFRKSL 274
7tmA_C3aR cd15115
complement component 3a anaphylatoxin chemotactic receptors, member of the class A family of ...
229-299 6.95e-07

complement component 3a anaphylatoxin chemotactic receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The anaphylatoxin receptors are a group of G-protein coupled receptors which bind anaphylatoxins; members of this group include C3a receptors and C5a receptors. Anaphylatoxins are also known as complement peptides (C3a, C4a and C5a) that are produced from the activation of the complement system cascade. These complement anaphylatoxins can trigger degranulation of endothelial cells, mast cells, or phagocytes, which induce a local inflammatory response and stimulate smooth muscle cell contraction, histamine release, and increased vascular permeability. They are potent mediators involved in chemotaxis, inflammation, and generation of cytotoxic oxygen-derived free radicals. In humans, a single receptor for C3a (C3AR1) and two receptors for C5a (C5AR1 and C5AR2, also known as C5L2 or GPR77) have been identified, but there is no known receptor for C4a.


Pssm-ID: 320243 [Multi-domain]  Cd Length: 265  Bit Score: 49.77  E-value: 6.95e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVA--SLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15115 190 AKSQSKTFRVIIAVVVAFFVCWAPYHIIGILSLYGDPPLSKVLMSwdHLSIALAYANSCLNPVLYVFMGKDFK 262
7tmA_MCHR1 cd15338
melanin concentrating hormone receptor 1, member of the class A family of seven-transmembrane ...
231-302 7.40e-07

melanin concentrating hormone receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors; Melanin-concentrating hormone receptor (MCHR) binds melanin concentrating hormone and is presumably involved in the neuronal regulation of food intake and energy homeostasis. Despite strong homology with somatostatin receptors, MCHR does not appear to bind somatostatin. Two MCHRs have been characterized in vertebrates, MCHR1 and MCHR2. MCHR1 is expressed in all mammals, whereas MCHR2 is only expressed in the higher order mammals, such as humans, primates, and dogs, and is not found in rodents. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320460 [Multi-domain]  Cd Length: 282  Bit Score: 49.81  E-value: 7.40e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKEceihTAVASLFLW-----LGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15338 210 RTKKVTRMAVAICLAFFICWAPFYILQLAHLSIDR----PSLAFLYAYnvaisMGYANSCINPFLYIMLSETFKRQF 282
7tmA_Parapinopsin cd15075
non-visual parapinopsin, member of the class A family of seven-transmembrane G protein-coupled ...
229-300 7.61e-07

non-visual parapinopsin, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes the non-visual pineal pigment, parapinopsin, which is a member of the class A of the seven transmembrane G protein-coupled receptors. Parapinopsin serves as a UV-sensitive pigment for the wavelength discrimination in the pineal-related organs of lower vertebrates such as reptiles, amphibians, and fish. Although parapinopsin is phylogenetically related to vertebrate visual pigments such as rhodopsin, which releases its retinal chromophore and bleaches, the parapinopsin photoproduct is stable and does not bleach. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extra-retinal tissues and/or in non-rod, non-cone retinal cells.


Pssm-ID: 320203 [Multi-domain]  Cd Length: 279  Bit Score: 49.78  E-value: 7.61e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15075 206 AKAEVQVARMVVVMVMAFLLCWLPYAAFALTVVSKPDVYINPLIATVPMYLAKSSTVYNPIIYIFMNKQFRD 277
7tmA_AstC_insect cd15094
somatostatin-like receptor for allatostatin C, member of the class A family of ...
230-302 7.84e-07

somatostatin-like receptor for allatostatin C, member of the class A family of seven-transmembrane G protein-coupled receptors; G protein-coupled somatostatin receptors (SSTRs) are composed of five distinct subtypes (SSTR1-5) that display strong sequence similarity with opioid receptors. All five receptor subtypes bind the natural somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. In Drosophila melanogaster and other insects, a 15-amino-acid peptide named allatostatin C(AstC) binds the somatostatin-like receptors. Two AstC receptors have been identified in Drosophila with strong sequence homology to human somatostatin and opioid receptors.


Pssm-ID: 320222 [Multi-domain]  Cd Length: 282  Bit Score: 49.78  E-value: 7.84e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKEC----EIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15094 206 RSHRKVTRLVLTVISVYIICWLPYWAFQVHLIFLPPGtdmpKWEILMFLLLTVLSYANSMVNPLLYAFLSENFRKSF 282
7tmA_Relaxin_R cd15137
relaxin family peptide receptors, member of the class A family of seven-transmembrane G ...
218-302 8.13e-07

relaxin family peptide receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes relaxin/insulin-like family peptide receptor 1 (RXFP1 or LGR7) and 2 (RXFP2 or LGR8), which contain a very large extracellular N-terminal domain with numerous leucine-rich repeats responsible for hormone recognition and binding. Relaxin is a member of the insulin superfamily that has diverse actions in both reproductive and non-reproductive tissues. The relaxin-like peptide family includes relaxin-1, relaxin-2, and the insulin-like (INSL) peptides such as INSL3, INSL4, INSL5 and INSL6. The relaxin family peptides share high structural but low sequence similarity, and exert their physiological functions by activating a group of four GPCRs, RXFP1-4. Relaxin and INSL3 are the endogenous ligands for RXFP1 and RXFP2, respectively. Upon receptor binding, relaxin activates a variety of signaling pathways to produce second messengers such as cAMP.


Pssm-ID: 320265 [Multi-domain]  Cd Length: 284  Bit Score: 49.51  E-value: 8.13e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALtMSLCKeCEIHTAVaslFLWLGYF----NSTLNPVIYTI 293
Cdd:cd15137 201 RRTRKAAASRKSKRDMAVAKRFFLIVLTDFLCWIPIIVIGI-LALSG-VPIPGEV---YAWVAVFvlpiNSALNPILYTL 275

                ....*....
gi 45647651 294 FNPEFRRAF 302
Cdd:cd15137 276 STPKFRKKL 284
7tmA_GPR3_GPR6_GPR12-like cd15100
G protein-coupled receptors 3, 6, 12, and related proteins, member of the class A family of ...
218-301 9.66e-07

G protein-coupled receptors 3, 6, 12, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR3, GPR6, and GPR12 form a subfamily of constitutively active G-protein coupled receptors with dual coupling to G(s) and G(i) proteins. These three orphan receptors are involved in the regulation of cell proliferation and survival, neurite outgrowth, cell clustering, and maintenance of meiotic prophase arrest. They constitutively activate adenylate cyclase to a similar degree as that seen with fully activated G(s)-coupled receptors, and are also able to constitutively activate inhibitory G(i/o) proteins. Lysophospholipids such as sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine have been detected as the high-affinity ligands for Gpr6 and Gpr12, respectively, which show high sequence homology with GPR3. Also included in this subfamily is GPRx, also known as GPR185, which involved in the maintenance of meiotic arrest in frog oocytes.


Pssm-ID: 320228 [Multi-domain]  Cd Length: 268  Bit Score: 49.40  E-value: 9.66e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQLLEAKR---ERKAAQTLAIITGAFVICWLPFFVmaltMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIF 294
Cdd:cd15100 185 HQIALQRHFLAPSHyvaTRKGVSTLALILGTFAACWIPFAV----YCLLGDGSSPALYTYATLLPATYNSMINPIIYAFR 260

                ....*..
gi 45647651 295 NPEFRRA 301
Cdd:cd15100 261 NQDIQKV 267
7tmA_AT2R cd15191
type 2 angiotensin II receptor, member of the class A family of seven-transmembrane G ...
227-302 1.01e-06

type 2 angiotensin II receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Angiotensin II (Ang II), the main effector in the renin-angiotensin system, plays a crucial role in the regulation of cardiovascular homeostasis through its type 1 (AT1) and type 2 (AT2) receptors. Ang II contributes to cardiovascular diseases such as hypertension and atherosclerosis via AT1R activation. Ang II increases blood pressure through Gq-mediated activation of phospholipase C, resulting in phosphoinositide (PI) hydrolysis and increased intracellular calcium levels. Through the AT2R, Ang II counteracts the vasoconstrictor action of AT1R and thereby induces vasodilation, sodium excretion, and reduction of blood pressure. Moreover, AT1R promotes cell proliferation, whereas AT2R inhibits proliferation and stimulates cell differentiation. The AT2R is highly expressed during fetal development, however it is scarcely present in adult tissues and is induced in pathological conditions. Generally, the AT1R mediates many actions of Ang II, while the AT2R is involved in the regulation of blood pressure and renal function.


Pssm-ID: 341341 [Multi-domain]  Cd Length: 285  Bit Score: 49.36  E-value: 1.01e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 227 LEAKRERKAAQTLAIITGAFVICWLPFFVMAL-----TMSLCKECEIHTAV---ASLFLWLGYFNSTLNPVIYTIFNPEF 298
Cdd:cd15191 202 KNKQRRDKVLKMVAAVVLAFLICWFPFHVLTFldalaRMGVINNCWVITVIdkaLPFAICLGFSNSCINPFLYCFVGNHF 281

                ....
gi 45647651 299 RRAF 302
Cdd:cd15191 282 REKL 285
7tmA_CCK_R cd15206
cholecystokinin receptors, member of the class A family of seven-transmembrane G ...
224-302 1.16e-06

cholecystokinin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Cholecystokinin receptors (CCK-AR and CCK-BR) are a group of G-protein coupled receptors which bind the peptide hormones cholecystokinin (CCK) or gastrin. CCK, which facilitates digestion in the small intestine, and gastrin, a major regulator of gastric acid secretion, are highly similar peptides. Like gastrin, CCK is a naturally-occurring linear peptide that is synthesized as a preprohormone, then proteolytically cleaved to form a family of peptides with the common C-terminal sequence (Gly-Trp-Met-Asp-Phe-NH2), which is required for full biological activity. CCK-AR (type A, alimentary; also known as CCK1R) is found abundantly on pancreatic acinar cells and binds only sulfated CCK-peptides with very high affinity, whereas CCK-BR (type B, brain; also known as CCK2R), the predominant form in the brain and stomach, binds CCK or gastrin and discriminates poorly between sulfated and non-sulfated peptides. CCK is implicated in regulation of digestion, appetite control, and body weight, and is involved in neurogenesis via CCK-AR. There is some evidence to support that CCK and gastrin, via their receptors, are involved in promoting cancer development and progression, acting as growth and invasion factors.


Pssm-ID: 320334 [Multi-domain]  Cd Length: 269  Bit Score: 48.93  E-value: 1.16e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 224 RQLLEAKRerKAAQTLAIITGAFVICWLPFFVmALTMSLCKECE----IHTAVASLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15206 190 WTLLEAKK--RVIRMLFVIVVEFFICWTPLYV-INTWKAFDPPSaaryVSSTTISLIQLLAYISSCVNPITYCFMNKRFR 266

                ...
gi 45647651 300 RAF 302
Cdd:cd15206 267 QAF 269
7tmA_VA_opsin cd15082
non-visual VA (vertebrate ancient) opsins, member of the class A family of seven-transmembrane ...
210-302 1.18e-06

non-visual VA (vertebrate ancient) opsins, member of the class A family of seven-transmembrane G protein-coupled receptors; The vertebrate ancient (VA) opsin photopigments were originally identified in salmon and they appear to have diverged early in the evolution of vertebrate opsins. VA opsins are localized in the inner retina and the brain in teleosts. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extraretinal tissues and/or in non-rod, non-cone retinal cells. They are thought to be involved in light-dependent physiological functions such as photo-entrainment of circadian rhythm, photoperiodicity, and body color change. The VA opsins belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops.


Pssm-ID: 320210 [Multi-domain]  Cd Length: 291  Bit Score: 49.02  E-value: 1.18e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 210 LASIANPHQKLAKRRqlleaKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPV 289
Cdd:cd15082 204 LRKVSNTQGRLGNAR-----KPERQVTRMVVVMIVAFMVCWTPYAAFSILVTAHPTIHLDPRLAAIPAFFSKTAAVYNPI 278
                        90
                ....*....|...
gi 45647651 290 IYTIFNPEFRRAF 302
Cdd:cd15082 279 IYVFMNKQFRKCL 291
7tmA_NPSR cd15197
neuropeptide S receptor, member of the class A family of seven-transmembrane G protein-coupled ...
238-295 1.26e-06

neuropeptide S receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Neuropeptide S (NPS) promotes arousal and anxiolytic-like effects by activating its cognate receptor NPSR. NPSR is widely expressed in the brain, and its activation induces an elevation of intracellular calcium and cAMP concentrations, presumably by coupling to G(s) and G(q) proteins. Mutations in NPSR have been associated with an increased susceptibility to asthma. NPSR was originally identified as an orphan receptor GPR154 and is also known as G protein receptor for asthma susceptibility (GPRA) or vasopressin receptor-related receptor 1 (VRR1).


Pssm-ID: 320325 [Multi-domain]  Cd Length: 294  Bit Score: 48.96  E-value: 1.26e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 238 TLAIITgAFVICWLPFFV--MALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFN 295
Cdd:cd15197 229 TFVIVT-VFIICWSPYFVfdLLDVFGLLPRSKTKIAAATFIQSLAPLNSAINPLIYCLFS 287
7tmA_NPR-like_invertebrate cd15391
invertebrate neuropeptide receptor-like, member of the class A family of seven-transmembrane G ...
222-299 1.73e-06

invertebrate neuropeptide receptor-like, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup includes putative neuropeptide receptor found in invertebrates, which is a member of class A of 7-transmembrane G protein-coupled receptors. This orphan receptor shares a significant amino acid sequence identity with the neurokinin 1 receptor (NK1R). The endogenous ligand for NK1R is substance P, an 11-amino acid peptide that functions as a vasodilator and neurotransmitter and is released from the autonomic sensory nerve fibers.


Pssm-ID: 320513 [Multi-domain]  Cd Length: 289  Bit Score: 48.67  E-value: 1.73e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQLLEAKRERKAAQTLAIITGAFVICWLP---FFVMALTMSLCKECEIHT--AVASLFLWLGYFNSTLNPVIYTIFNP 296
Cdd:cd15391 204 KGRDDMQIKSKRKVIKMLVFVVLMFGICWLPlhlFNLVQDFSTVFRNMPQHTtrLIYGACHWIAMSNSFVNPIIYLFMND 283

                ...
gi 45647651 297 EFR 299
Cdd:cd15391 284 SFR 286
7tmA_GPR185-like cd15960
G protein-coupled receptor 185 and similar proteins, member of the class A family of ...
213-302 1.74e-06

G protein-coupled receptor 185 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR185, also called GPRx, is a member of the constitutively active GPR3/6/12 subfamily of G protein-coupled receptors. It plays a role in the maintenance of meiotic arrest in Xenopus laevis oocytes through G(s) protein, which leads to increased cAMP levels. In Xenopus laevis, GPR185 is primarily expressed in brain, ovary, and testis; however, its ortholog has not been identified in other vertebrate genomes. GPR3, GPR6, and GPR12 form a subfamily of constitutively active G-protein coupled receptors with dual coupling to G(s) and G(i) proteins. These three orphan receptors are involved in the regulation of cell proliferation and survival, neurite outgrowth, cell clustering, and maintenance of meiotic prophase arrest.


Pssm-ID: 320626 [Multi-domain]  Cd Length: 268  Bit Score: 48.74  E-value: 1.74e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 213 IANPH-QKLAKRRQLLE---AKRERKAAQTLAIITGAFVICWLPFFVMALTMSlckecEIHTAVASLFLWL-GYFNSTLN 287
Cdd:cd15960 179 IAFRHaQQIAVQHQFVNfclASSTRKGVSTLSLILATFAFCWVPFAVYSMVAD-----SSYPMIYTYYLVLpAACNSVIN 253
                        90
                ....*....|....*
gi 45647651 288 PVIYTIFNPEFRRAF 302
Cdd:cd15960 254 PIIYAFRNPDIQKSL 268
7tmA_Mu_opioid_R cd15090
opioid receptor subtype mu, member of the class A family of seven-transmembrane G ...
219-302 1.80e-06

opioid receptor subtype mu, member of the class A family of seven-transmembrane G protein-coupled receptors; The mu-opioid receptor binds endogenous opioids such as beta-endorphin and endomorphin. The opioid receptor family is composed of four major subtypes: mu (MOP), delta (DOP), kappa (KOP) opioid receptors, and the nociceptin/orphanin FQ peptide receptor (NOP). They are distributed widely in the central nervous system and respond to classic alkaloid opiates, such as morphine and heroin, as well as to endogenous peptide ligands, which include dynorphins, enkephalins, endorphins, endomorphins, and nociceptin. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others.


Pssm-ID: 320218 [Multi-domain]  Cd Length: 279  Bit Score: 48.45  E-value: 1.80e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 219 KLAKRRQLLEAKRE----RKAAQTLAIITGAFVICWLPFFVMALTMSLCK--ECEIHTAVASLFLWLGYFNSTLNPVIYT 292
Cdd:cd15090 190 RLKSVRMLSGSKEKdrnlRRITRMVLVVVAVFIVCWTPIHIYVIIKALVTipETTFQTVSWHFCIALGYTNSCLNPVLYA 269
                        90
                ....*....|
gi 45647651 293 IFNPEFRRAF 302
Cdd:cd15090 270 FLDENFKRCF 279
7tmA_MC3R cd15352
melanocortin receptor subtype 3, member of the class A family of seven-transmembrane G ...
234-302 1.84e-06

melanocortin receptor subtype 3, member of the class A family of seven-transmembrane G protein-coupled receptors; The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function.


Pssm-ID: 320474 [Multi-domain]  Cd Length: 272  Bit Score: 48.35  E-value: 1.84e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSLCKE---CEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15352 201 KGAVTITILLGVFIVCWAPFFLHLILIISCPHnpyCLCYTSHFNTYLVLIMCNSVIDPLIYAFRSLEMRKTF 272
7tmA_Parietopsin cd15085
non-visual parietopsins, member of the class A family of seven-transmembrane G protein-coupled ...
203-299 1.84e-06

non-visual parietopsins, member of the class A family of seven-transmembrane G protein-coupled receptors; Parietopsin is a non-visual green light-sensitive opsin that was initially identified in the parietal eye of lizards. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extra-retinal tissues and/or in non-rod, non-cone retinal cells. They are thought to be involved in light-dependent physiological functions such as photo-entrainment of circadian rhythm, photoperiodicity and body color change. Parietopsin belongs to the class A of the G protein-coupled receptors and shows strong homology to the vertebrate visual opsins.


Pssm-ID: 320213 [Multi-domain]  Cd Length: 280  Bit Score: 48.70  E-value: 1.84e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 203 GVGLGGVLASIANPHQKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYF 282
Cdd:cd15085 181 GFSYGNVLRSLHKLNKKIEQQGGKNCPEEEERAVIMVLAMVIAFLICWLPYTVFALIVVVNPELSISPLAATMPTYFAKT 260
                        90
                ....*....|....*..
gi 45647651 283 NSTLNPVIYTIFNPEFR 299
Cdd:cd15085 261 SPVYNPIIYIFLNKQFR 277
7tmA_Adenosine_R_A1 cd15071
adenosine receptor subtype A1, member of the class A family of seven-transmembrane G ...
231-302 2.18e-06

adenosine receptor subtype A1, member of the class A family of seven-transmembrane G protein-coupled receptors; The adenosine A1 receptor, a member of the adenosine receptor family of G protein-coupled receptors, binds adenosine as its endogenous ligand. The A1 receptor has primarily inhibitory function on the tissues in which it is located. The A1 receptor slows metabolic activity in the brain and has a strong anti-adrenergic effects in the heart. Thus, it antagonizes beta1-adrenergic receptor-induced stimulation and thereby reduces cardiac contractility. The A1 receptor preferentially couples to G proteins of the G(i/o) family, which lead to inhibition of adenylate cyclase and thereby lowering the intracellular cAMP levels.


Pssm-ID: 341323 [Multi-domain]  Cd Length: 290  Bit Score: 48.30  E-value: 2.18e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15071 219 KELKIAKSLALILFLFALSWLPLHILNCITLFCPSCKKPMILTYIAIFLTHGNSAMNPIVYAFRIKKFRTTF 290
7tmA_PR4-like cd15392
neuropeptide Y receptor-like found in insect and related proteins, member of the class A ...
224-302 2.43e-06

neuropeptide Y receptor-like found in insect and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup includes a novel G protein-coupled receptor (also known as PR4 receptor) from Drosophila melanogaster, which can be activated by the members of the neuropeptide Y (NPY) family, including NPY, peptide YY (PYY) and pancreatic polypeptide (PP), when expressed in Xenopus oocytes. These homologous peptides of 36-amino acids in length contain a hairpin-like structural motif, which referred to as the pancreatic polypeptide fold, and function as gastrointestinal hormones and neurotransmitters. The PR4 receptor also shares strong sequence homology to the mammalian tachykinin receptors (NK1R, NK2R, and NK3R), whose endogenous ligands are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB), respectively. The tachykinins function as excitatory transmitters on neurons and cells in the gastrointestinal tract.


Pssm-ID: 320514 [Multi-domain]  Cd Length: 287  Bit Score: 48.13  E-value: 2.43e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 224 RQLLEAKRerKAAQTLAIITGAFVICWLPFFVMALTMslckecEIHTAVAS---------LFLWLGYFNSTLNPVIYTIF 294
Cdd:cd15392 208 QRMAESKR--KLVKMMITVVAIFALCWLPLNILNLVG------DHDESIYSwpyipylwlAAHWLAMSHCCYNPFIYCWM 279

                ....*...
gi 45647651 295 NPEFRRAF 302
Cdd:cd15392 280 NAKFRNGF 287
7tmA_Adenosine_R_A2B cd15069
adenosine receptor subtype 2AB, member of the class A family of seven-transmembrane G ...
230-302 2.97e-06

adenosine receptor subtype 2AB, member of the class A family of seven-transmembrane G protein-coupled receptors; The A2B receptor, a member of the adenosine receptor family of G protein-coupled receptors, binds adenosine as its endogenous ligand and is involved in regulating myocardial oxygen consumption and coronary blood flow. High-affinity A2A and low-affinity A2B receptors are preferentially coupled to G proteins of the stimulatory (Gs) family, which lead to activation of adenylate cyclase and thereby increasing the intracellular cAMP levels. The A2A receptor activation protects against tissue injury and acts as anti-inflammatory agent. In human skin endothelial cells, activation of A2B receptor, but not the A2A receptor, promotes angiogenesis. Alternatively, activated A2A receptor, but not the A2B receptor, promotes angiogenesis in human umbilical vein and lung microvascular endothelial cells. The A2A receptor alters cardiac contractility indirectly by modulating the anti-adrenergic effect of A1 receptor, while the A2B receptor exerts direct effects on cardiac contractile function, but does not modulate beta-adrenergic or A1 anti-adrenergic effects.


Pssm-ID: 320197 [Multi-domain]  Cd Length: 294  Bit Score: 48.01  E-value: 2.97e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMAlTMSLCKECEIHTA---VASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15069 220 QREIHAAKSLAIIVGIFALCWLPVHILN-CITLFQPEFSKSKpkwAMNVAILLSHANSVVNPIVYAYRNRDFRYTF 294
7tmA_GPR151 cd15002
G protein-coupled receptor 151, member of the class A family of seven-transmembrane G ...
222-302 3.82e-06

G protein-coupled receptor 151, member of the class A family of seven-transmembrane G protein-coupled receptors; G-protein coupled receptor 151 (GRP151) is an orphan receptor of unknown function. Its expression is conserved in habenular axonal projections of vertebrates and may be a promising novel target for psychiatric drug development. GPR151 shows high sequence similarity with galanin receptors (GALR). GPR151 is a member of the class A rhodopsin-like GPCRs, which represent a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320133 [Multi-domain]  Cd Length: 280  Bit Score: 47.40  E-value: 3.82e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHT--AVASLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15002 198 KTQNLRNQIRSRKLTHMLLSVVLAFTILWLPEWVAWLWLIHIKSSGSSPpqLFNVLAQLLAFSISSVNPIIFLLMSEEFR 277

                ...
gi 45647651 300 RAF 302
Cdd:cd15002 278 EGF 280
7tmA_NK1R cd16002
neurokinin 1 receptor, member of the class A family of seven-transmembrane G protein-coupled ...
232-302 4.03e-06

neurokinin 1 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; The neurokinin 1 receptor (NK1R), also known as tachykinin receptor 1 (TACR1) or substance P receptor (SPR), is a G-protein coupled receptor found in the mammalian central nervous and peripheral nervous systems. The tachykinins act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. SP is a high-affinity endogenous ligand for NK1R, which interacts with the Gq protein and activates phospholipase C, leading to elevation of intracellular calcium. SP is an extremely potent vasodilator through endothelium dependent mechanism and is released from the autonomic sensory nerves. NK2R is a high-affinity receptor for NKA, the tachykinin neuropeptide substance K. SP and NKA are found in the enteric nervous system and mediate in the regulation of gastrointestinal motility, secretion, vascular permeability, and pain perception.


Pssm-ID: 320668 [Multi-domain]  Cd Length: 284  Bit Score: 47.55  E-value: 4.03e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 45647651 232 ERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFL---WLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd16002 211 KRKVVKMMIVVVCTFAICWLPYHIYFLLQYFHPELYEQKFIQQVYLaimWLAMSSTMYNPIIYCCLNDRFRVGF 284
7tmA_capaR cd15134
neuropeptide capa receptor and similar invertebrate proteins, member of the class A family of ...
245-302 4.13e-06

neuropeptide capa receptor and similar invertebrate proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; CapaR is a G-protein coupled receptor for the Drosophila melanogaster capa neuropeptides (Drm-capa-1 and -2), which act on the Malpighian tubules to increase fluid transport. The capa peptides are evolutionarily related to vertebrate Neuromedin U neuropeptide and contain a C-terminal FPRXamide motif. CapaR regulates fluid homeostasis through its ligands, thereby acts as a desiccation stress-responsive receptor. CapaR undergoes desensitization, with internalization mediated by beta-arrestin-2.


Pssm-ID: 320262 [Multi-domain]  Cd Length: 298  Bit Score: 47.71  E-value: 4.13e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 45647651 245 AFVICWLPFFVMALTMSLCKECEIHTAVASLFLW-----LGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15134 236 AFFICWAPFHAQRLLTVYAKNMTPPYLFINRILFyisgvLYYVSSTVNPILYNVMSAKYRQAF 298
7tmA_GPR3 cd15963
G protein-coupled receptor 3, member of the class A family of seven-transmembrane G ...
218-300 4.30e-06

G protein-coupled receptor 3, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR3, GPR6, and GPR12 form a subfamily of constitutively active G-protein coupled receptors with dual coupling to G(s) and G(i) proteins. These three orphan receptors are involved in the regulation of cell proliferation and survival, neurite outgrowth, cell clustering, and maintenance of meiotic prophase arrest. They constitutively activate adenylate cyclase to a similar degree as that seen with fully activated G(s)-coupled receptors, and are also able to constitutively activate inhibitory G(i/o) proteins. Lysophospholipids such as sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine have been detected as the high-affinity ligands for Gpr6 and Gpr12, respectively, which show high sequence homology with GPR3.


Pssm-ID: 320629 [Multi-domain]  Cd Length: 268  Bit Score: 47.18  E-value: 4.30e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQLLEAKR---ERKAAQTLAIITGAFVICWLPFFVMALtMSLCKECEIHTAVAslfLWLGYFNSTLNPVIYTIF 294
Cdd:cd15963 185 HQIALQRHFLPTSHyvtTRKGIATLAVILGTFASCWLPFAVYCL-LGDYTYPALYTYAT---LLPATYNSMINPIIYAFR 260

                ....*.
gi 45647651 295 NPEFRR 300
Cdd:cd15963 261 NQEIQK 266
7tmA_ET_R-like cd14977
endothelin receptors and related proteins, member of the class A family of seven-transmembrane ...
216-302 4.62e-06

endothelin receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This subfamily of G-protein coupled receptors includes endothelin receptors, bombesin receptor subtype 3 (BRS-3), gastrin-releasing peptide receptor (GRPR), neuromedin B receptor (NMB-R), endothelin B receptor-like 2 (ETBR-LP-2), and GRP37. The endothelin receptors and related proteins are members of the seven transmembrane rhodopsin-like G-protein coupled receptor family (class A GPCRs) which activate multiple effectors via different types of G protein.


Pssm-ID: 320108 [Multi-domain]  Cd Length: 292  Bit Score: 47.42  E-value: 4.62e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 216 PHQKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMA-LTMSLCKECEIHTAVASLFL-----WLGYFNSTLNPV 289
Cdd:cd14977 200 RAAKEYTRGTKKHMKQRRQLAKTVLCLVLVFAFCWLPEHISNiLRATLYNEVLIDTRSTLDILdligqFLSFFNSCVNPI 279
                        90
                ....*....|...
gi 45647651 290 IYTIFNPEFRRAF 302
Cdd:cd14977 280 ALYLLSEPFRRAF 292
7tmA_Opsin_Gq_invertebrates cd15337
invertebrate Gq opsins, member of the class A family of seven-transmembrane G protein-coupled ...
228-302 4.87e-06

invertebrate Gq opsins, member of the class A family of seven-transmembrane G protein-coupled receptors; The invertebrate Gq-coupled opsin subfamily includes the arthropod and mollusc visual opsins. Like the vertebrate visual opsins, arthropods possess color vision by the use of multiple opsins sensitive to different light wavelengths. The invertebrate Gq opsins are closely related to the vertebrate melanopsins, the primary photoreceptor molecules for non-visual responses to light, and the R1-R6 photoreceptors, which are the fly equivalent to the vertebrate rods. The Gq opsins belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops.


Pssm-ID: 320459 [Multi-domain]  Cd Length: 292  Bit Score: 47.32  E-value: 4.87e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 228 EAKRERKAAQTLAIITGAFVICWLPFFVMALtMSLCKECE-IHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15337 218 RKKAEIRIAKVAIILISLFLLSWTPYAVVAL-LGQFGPAYwITPYVSELPVMFAKASAIYNPIIYALSHPKFRAAL 292
7tmA_ETH-R cd14997
ecdysis-triggering hormone receptors, member of the class A family of seven-transmembrane G ...
211-302 5.20e-06

ecdysis-triggering hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup represents the ecdysis-triggering hormone receptors found in insects, which are members of the class A family of seven-transmembrane G-protein coupled receptors. Ecdysis-triggering hormones are vital regulatory signals that govern the stereotypic physiological sequence leading to cuticle shedding in insects. Thus, the ETH signaling system has been a target for the design of more sophisticated insect-selective pest control strategies. Two subtypes of ecdysis-triggering hormone receptor were identified in Drosophila melanogaster. Blood-borne ecdysis-triggering hormone (ETH) activates the behavioral sequence through direct actions on the central nervous system. In insects, ecdysis is thought to be controlled by the interaction between peptide hormones; in particular between ecdysis-triggering hormone (ETH) from the periphery and eclosion hormone (EH) and crustacean cardioactive peptide (CCAP) from the central nervous system. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320128 [Multi-domain]  Cd Length: 294  Bit Score: 47.28  E-value: 5.20e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 211 ASIANPHQkLAKRRQLLeakrerkaaQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYF-------N 283
Cdd:cd14997 206 ADAANRHT-LRSRRQVV---------YMLITVVVLFFVCLLPFRVVTLWIIFAPDEDLQALGLEGYLNLLVFcrvmvylN 275
                        90
                ....*....|....*....
gi 45647651 284 STLNPVIYTIFNPEFRRAF 302
Cdd:cd14997 276 SALNPILYNLMSTKFRSAF 294
7tmA_tmt_opsin cd15086
teleost multiple tissue (tmt) opsin, member of the class A family of seven-transmembrane G ...
218-302 6.00e-06

teleost multiple tissue (tmt) opsin, member of the class A family of seven-transmembrane G protein-coupled receptors; Teleost multiple tissue (tmt) opsins are homologs of encephalopsin. Mouse encephalopsin (or panopsin) is highly expressed in the brain and testes, whereas the teleost homologs are localized to multiple tissues. The exact functions of the encephalopsins and tmt-opsins are unknown. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extra-retinal tissues and/or in non-rod, non-cone retinal cells. They are thought to be involved in light-dependent physiological functions such as photo-entrainment of circadian rhythm, photoperiodicity and body color change. Tmt opsins belong to the class A of the G protein-coupled receptors and show strong homology to the vertebrate visual opsins.


Pssm-ID: 320214 [Multi-domain]  Cd Length: 276  Bit Score: 47.04  E-value: 6.00e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIhTAVASLF-LWLGYFNSTLNPVIYTIFNP 296
Cdd:cd15086 192 KQVGKINKSTARKREQHVLLMVVTMVICYLLCWLPYGVMALLATFGKPGLV-TPVASIVpSILAKSSTVVNPIIYVFMNK 270

                ....*.
gi 45647651 297 EFRRAF 302
Cdd:cd15086 271 QFYRCF 276
7tmA_S1PR4_Edg6 cd15349
sphingosine-1-phosphate receptor subtype 4 (S1PR4 or S1P4), also called endothelial ...
230-301 7.52e-06

sphingosine-1-phosphate receptor subtype 4 (S1PR4 or S1P4), also called endothelial differentiation gene 6 (Edg6), member of the class A family of seven-transmembrane G protein-coupled receptors; The endothelial differentiation gene (Edg) family of G-protein coupled receptors binds blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). The Edg receptors couple and activate at least three different G protein subtypes including G(i/o), G(q/11), and G(12/13).


Pssm-ID: 320471 [Multi-domain]  Cd Length: 271  Bit Score: 46.70  E-value: 7.52e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKEceihTAVASLF-----LWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15349 198 RRSLRLLKTVLMILGAFMVCWGPLFILLLVDFFCSS----RSCKPLFgmewvLALAVLNSAINPLIYSFRSLEVRRA 270
7tmA_GHSR cd15131
growth hormone secretagogue receptor, member of the class A family of seven-transmembrane G ...
218-301 1.02e-05

growth hormone secretagogue receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Growth hormone secretagogue receptor, GHSR, is also known as GH-releasing peptide receptor (GHRP) or Ghrelin receptor. Ghrelin, the endogenous ligand for GHSR, is an acylated 28-amino acid peptide hormone produced by ghrelin cells in the gastrointestinal tract. Ghrelin, also called hunger hormone, is involved in the regulation of growth hormone release, appetite and feeding, gut motility, lipid and glucose metabolism, and energy balance. It also plays a role in the cardiovascular, immune, and reproductive systems. GHSR couples to G-alpha-11 proteins. Both ghrelin and GHSR are expressed in a wide range of cancer tissues. Recent studies suggested that ghrelin may play a role in processes associated with cancer progression, including cell proliferation, metastasis, apoptosis, and angiogenesis.


Pssm-ID: 320259 [Multi-domain]  Cd Length: 291  Bit Score: 46.42  E-value: 1.02e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKRRQ-------LLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSlcKECEIHTAVASLF--------LWLGYF 282
Cdd:cd15131 194 RKLWRRRRenigpnaSHRDKNNRQTVKMLAVVVFAFVLCWLPFHVGRYLFS--KSFEAGSLEIALIsqycnlvsFVLFYL 271
                        90
                ....*....|....*....
gi 45647651 283 NSTLNPVIYTIFNPEFRRA 301
Cdd:cd15131 272 SAAINPILYNIMSKKYRVA 290
7tmA_GPR161 cd15214
orphan G protein-coupled receptor 161, member of the class A family of seven-transmembrane G ...
234-300 1.06e-05

orphan G protein-coupled receptor 161, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR161, an orphan GPCR, is a negative regulator of Sonic hedgehog (Shh) signaling, which promotes the processing of zinc finger protein GLI3 into its transcriptional repressor form (GLI3R) during neural tube development. In the absence of Shh, this proteolytic processing is normally mediated by cAMP-dependent protein kinase A (PKA). GPR161 is recruited to primary cilia by a mechanism depends on TULP3 (tubby-related protein 3) and the intraflagellar complex A (IFT-A). Moreover, Gpr161 knockout mice show phenotypes observed in Tulp3/IFT-A mutants, and cause increased Shh signaling in the neural tube. Taken together, GPR161 negatively regulates the PKA-dependent GLI3 processing in the absence of Shh signal by coupling to G(s) protein, which causes activation of adenylate cyclase, elevated cAMP levels, and activation of PKA. Conversely, in the presence of Shh, GPR161 is removed from the cilia by internalization into the endosomal recycling compartment, leading to downregulation of its activity and thereby allowing Shh signaling to proceed. In addition, GPR161 is over-expressed in triple-negative breast cancer (lacking estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expression) and correlates with poor prognosis. Mutations of GPR161 have also been implicated as a novel cause for pituitary stalk interruption syndrome (PSIS), a rare congenital disease of the pituitary gland. GPR161 is a member of the class A family of GPCRs, which contains receptors for hormones, neurotransmitters, sensory stimuli, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320342 [Multi-domain]  Cd Length: 261  Bit Score: 46.09  E-value: 1.06e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15214 193 KAFITILVVLGAFVTTWGPYMVVISTEALWGKNSVSPQLETLATWLSFTSAVCHPLIYGLWNKTVRK 259
7tmA_TRH-R cd14995
thyrotropin-releasing hormone receptor, member of the class A family of seven-transmembrane G ...
239-302 1.11e-05

thyrotropin-releasing hormone receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; TRH-R is a member of the class A rhodopsin-like G protein-coupled receptors, which binds the tripeptide thyrotropin releasing hormone. The TRH-R activates phosphoinositide metabolism through a pertussis-toxin-insensitive G-protein, the G(q)/G(11) class. TRH stimulates the synthesis and release of thyroid-stimulating hormone in the anterior pituitary. TRH is produced in many other tissues, especially within the nervous system, where it appears to act as a neurotransmitter/neuromodulator. It also stimulates the synthesis and release of prolactin. In the CNS, TRH stimulates a number of behavioral and pharmacological actions, including increased turnover of catecholamines in the nucleus accumbens. There are two thyrotropin-releasing hormone receptors in some mammals, thyrotropin-releasing hormone receptor 1 (TRH1) which has been found in a number of species including rat, mouse, and human and thyrotropin-releasing hormone receptor 2 (TRH2) which has, only been found in rodents. These TRH receptors are found in high levels in the anterior pituitary, and are also found in the retina and in certain areas of the brain.


Pssm-ID: 320126 [Multi-domain]  Cd Length: 269  Bit Score: 46.22  E-value: 1.11e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 239 LAIITGAFVICWLPFFVMALTMS-------------LCKECEihtavaslflwlgYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd14995 206 LAVVVVLFALLWMPYRTLVVYNSfasppyldlwfllFCRTCI-------------YLNSAINPILYNLMSQKFRAAF 269
7tmA_leucokinin-like cd15393
leucokinin-like peptide receptor from tick and related proteins, member of the class A family ...
229-302 1.29e-05

leucokinin-like peptide receptor from tick and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup includes a leucokinin-like peptide receptor from the Southern cattle tick, Boophilus microplus, a pest of cattle world-wide. Leucokinins are invertebrate neuropeptides that exhibit myotropic and diuretic activity. This receptor is the first neuropeptide receptor known from the Acari and the second known in the subfamily of leucokinin-like peptide G-protein-coupled receptors. The other known leucokinin-like peptide receptor is a lymnokinin receptor from the mollusc Lymnaea stagnalis.


Pssm-ID: 320515 [Multi-domain]  Cd Length: 288  Bit Score: 45.86  E-value: 1.29e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFL---WLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15393 212 LKNKKKVIKMLIIVVALFALCWLPLQTYNLLNEIKPEINKYKYINIIWFcshWLAMSNSCYNPFIYGLYNEKFKREF 288
7tmA_P2Y1-like cd15168
P2Y purinoceptors 1, 2, 4, 6, 11 and similar proteins, member of the class A family of ...
224-302 1.79e-05

P2Y purinoceptors 1, 2, 4, 6, 11 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14). This cluster only includes P2Y1-like receptors as well as other closely related orphan receptors, such as GPR91 (a succinate receptor) and GPR80/GPR99 (an alpha-ketoglutarate receptor).


Pssm-ID: 341329 [Multi-domain]  Cd Length: 284  Bit Score: 45.39  E-value: 1.79e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 224 RQLLEAKRERKAAQTLAIITGAFVICWLPFFVM------ALTMSLCKECEIHTAVASLF-LW--LGYFNSTLNPVIYTIF 294
Cdd:cd15168 197 GEGVTSALRRKSIRLVIIVLALFAVCFLPFHVTrtinlaARLLSGTASCATLNGIYVAYkVTrpLASLNSCLNPLLYFLA 276

                ....*...
gi 45647651 295 NPEFRRAF 302
Cdd:cd15168 277 GDKFRRRL 284
7tmA_Melanopsin-like cd15083
vertebrate melanopsins and related opsins, member of the class A family of seven-transmembrane ...
228-301 1.85e-05

vertebrate melanopsins and related opsins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represent the Gq-coupled rhodopsin subfamily consists of melanopsins, insect photoreceptors R1-R6, invertebrate Gq opsins as well as their closely related opsins. Melanopsins (also called Opsin-4) are the primary photoreceptor molecules for non-visual functions such as the photo-entrainment of the circadian rhythm and pupillary constriction in mammals. Mammalian melanopsins are expressed only in the inner retina, whereas non-mammalian vertebrate melanopsins are localized in various extra-retinal tissues such as iris, brain, pineal gland, and skin. The outer photoreceptors (R1-R6) are the insect Drosophila equivalent to the vertebrate rods and are responsible for image formation and motion detection. The invertebrate G(q) opsins includes the arthropod and mollusk visual opsins as well as invertebrate melanopsins, which are also found in vertebrates. Arthropods possess color vision by the use of multiple opsins sensitive to different light wavelengths. Members of this subfamily belong to the class A of the G protein-coupled receptors and have seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops.


Pssm-ID: 320211 [Multi-domain]  Cd Length: 291  Bit Score: 45.40  E-value: 1.85e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 228 EAKRERKAAQTLAIITGAFVICWLPFFVMALtMSLCKECEIHTAVASLflWLGYFNST---LNPVIYTIFNPEFRRA 301
Cdd:cd15083 217 RRQAEVKTAKIALLLVLLFCLAWTPYAVVAL-IGQFGYLEVLTPLATA--IPAAFAKTsaiYNPVIYAFSHPKFRRA 290
7tmA_GPR83 cd15389
G protein-coupled receptor 83, member of the class A family of seven-transmembrane G ...
217-301 1.98e-05

G protein-coupled receptor 83, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR83, also known as GPR72, is widely expressed in the brain, including hypothalamic nuclei which is involved in regulating energy balance and food intake. The hypothalamic expression of GPR83 is tightly regulated in response to nutrient availability and is decreased in obese mice. A recent study suggests that GPR83 has a critical role in the regulation of systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. GPR83 shares a significant amino acid sequence identity with the tachykinin receptors, however its endogenous ligand is unknown.


Pssm-ID: 320511 [Multi-domain]  Cd Length: 285  Bit Score: 45.41  E-value: 1.98e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 217 HQKLAKRRqlleakRERKAAQTLAIITGAFVICWLPFFVMALTMSLcKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNP 296
Cdd:cd15389 207 EQYVAQRR------KKKKTIKMLMLVVLLFAICWLPLNCYHVLLSS-HPIRSNSALFFAFHWLAMSSTCYNPFIYCWLND 279

                ....*
gi 45647651 297 EFRRA 301
Cdd:cd15389 280 SFRSE 284
7tmA_motilin_R cd15132
motilin receptor, member of the class A family of seven-transmembrane G protein-coupled ...
229-301 2.11e-05

motilin receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Motilin receptor, also known as GPR38, is a G-protein coupled receptor that binds the endogenous ligand motilin. Motilin is a 22 amino acid peptide hormone expressed throughout the gastrointestinal tract and stimulates contraction of gut smooth muscle. Motilin is also called as the housekeeper of the gut because it is responsible for the proper filling and emptying of the gastrointestinal tract in response to food intake, and for stimulating the production of pepsin. Motilin receptor shares significant amino acid sequence identity with the growth hormone secretagogue receptor (GHSR) and neurotensin receptors (NTS-R1 and 2).


Pssm-ID: 320260 [Multi-domain]  Cd Length: 289  Bit Score: 45.56  E-value: 2.11e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 229 AKRERKAAQT---LAIITGAFVICWLPFFVMALTMSLCKECEI-----HTAVASLFLWlgYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15132 210 AARERSHRQTvriLAVVVLAFIICWLPFHIGRILFANTEDYRTmmfsqYFNIVAMQLF--YLSASINPILYNLISRKYRA 287

                .
gi 45647651 301 A 301
Cdd:cd15132 288 A 288
7tmA_CXCR3 cd15180
CXC chemokine receptor type 3, member of the class A family of seven-transmembrane G ...
220-302 2.38e-05

CXC chemokine receptor type 3, member of the class A family of seven-transmembrane G protein-coupled receptors; CXCR3 is an inflammatory chemotactic receptor for a group of CXC chemokines distinguished by the presence of the amino acid motif ELR immediately adjacent to their CXC motif. CXCR3 specifically binds three chemokines CXCL9 (monokine induced by gamma-interferon), CXCL10 (interferon induced protein of 10 kDa), and CXCL11 (interferon inducible T-cell alpha-chemoattractant, I-TAC). CXC3R is expressed on CD4+ Th1 and CD8+ cytotoxic T lymphocytes as well as highly on innate lymphocytes, such as NK cells and NK T cells, where it may mediate the recruitment of these cells to the sites of infection and inflammation. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines.


Pssm-ID: 341335 [Multi-domain]  Cd Length: 280  Bit Score: 45.07  E-value: 2.38e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 220 LAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMAL--TM----SLCKECEIHTAV---ASLFLWLGYFNSTLNPVI 290
Cdd:cd15180 189 LLRLLRSSQGFQKQRAIRVIVAVVVVFFLCWTPYNIALLvdTLidlsVLDRNCGTESRLdiaLSVTSSLGYFHCCLNPLL 268
                        90
                ....*....|..
gi 45647651 291 YTIFNPEFRRAF 302
Cdd:cd15180 269 YAFVGVKFRRKL 280
7tmA_AKHR cd15382
adipokinetic hormone receptor, member of the class A family of seven-transmembrane G ...
226-301 2.87e-05

adipokinetic hormone receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Adipokinetic hormone (AKH) is a lipid-mobilizing hormone that is involved in control of insect metabolism. Generally, AKH behaves as a typical stress hormone by mobilizing lipids, carbohydrates and/or certain amino acids such as proline. Thus, it utilizes the body's energy reserves to fight the immediate stress problems and subdue processes that are less important. Although AKH is known to responsible for regulating the energy metabolism during insect flight, it is also found in insects that have lost its functional wings and predominantly walk for their locomotion. AKH is structurally related to the mammalian gonadotropin-releasing hormone (GnRH) and they share a common ancestor. Both GnRH and AKH receptors are members of the class A of the seven-transmembrane, G-protein coupled receptor (GPCR) superfamily.


Pssm-ID: 320504 [Multi-domain]  Cd Length: 298  Bit Score: 44.99  E-value: 2.87e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 45647651 226 LLEAKRERKAAQTLAIITgAFVICWLPFFVMALTMSLCKEC--EIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15382 221 LLERARSRTLKMTIVIVL-VFIICWTPYFIMSLWYWFDRESasKVDPRIQKGLFLFAVSNSCMNPIVYGYFSIDLRRE 297
7tmA_SKR_NK2R cd16004
substance-K receptor, member of the class A family of seven-transmembrane G protein-coupled ...
204-302 3.22e-05

substance-K receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; The substance-K receptor (SKR), also known as tachykinin receptor 2 (TACR2) or neurokinin A receptor or NK2R, is a G-protein coupled receptor that specifically binds to neurokinin A. The tachykinins are widely distributed throughout the mammalian central and peripheral nervous systems and act as excitatory transmitters on neurons and cells in the gastrointestinal tract. The TKs are characterized by a common five-amino acid C-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is a hydrophobic residue. The three major mammalian tachykinins are substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The physiological actions of tachykinins are mediated through three types of receptors: neurokinin receptor type 1 (NK1R), NK2R, and NK3R. SP is a high-affinity endogenous ligand for NK1R, which interacts with the Gq protein and activates phospholipase C, leading to elevation of intracellular calcium. NK2R is a high-affinity receptor for NKA, the tachykinin neuropeptide substance K. SP and NKA are found in the enteric nervous system and mediate the regulation of gastrointestinal motility, secretion, vascular permeability, and pain perception.


Pssm-ID: 320670 [Multi-domain]  Cd Length: 285  Bit Score: 44.83  E-value: 3.22e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 204 VGLGGVLASIANPHQKLAKRRQLleaKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFL---WLG 280
Cdd:cd16004 187 IGITLWRSAVPGHQAHGAYHRQL---QAKKKFVKTMVVVVVTFAICWLPYHLYFILGSFNEDIYCQKYIQQVYLaifWLA 263
                        90       100
                ....*....|....*....|..
gi 45647651 281 YFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd16004 264 MSSTMYNPIIYCCLNQRFRSGF 285
7tmA_Mel1A cd15402
melatonin receptor subtype 1A, member of the class A family of seven-transmembrane G ...
238-302 3.52e-05

melatonin receptor subtype 1A, member of the class A family of seven-transmembrane G protein-coupled receptors; Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring sleep-promoting chemical found in vertebrates, invertebrates, bacteria, fungi, and plants. In mammals, melatonin is secreted by the pineal gland and is involved in regulation of circadian rhythms. Its production peaks during the nighttime, and is suppressed by light. Melatonin is shown to be synthesized in other organs and cells of many vertebrates, including the Harderian gland, leukocytes, skin, and the gastrointestinal (GI) tract, which contains several hundred times more melatonin than the pineal gland and is involved in the regulation of GI motility, inflammation, and sensation. Melatonin exerts its pleiotropic physiological effects through specific membrane receptors, named MT1A, MT1B, and MT1C, which belong to the class A rhodopsin-like G-protein coupled receptor family. MT1A and MT1B subtypes are present in mammals, whereas MT1C subtype has been found in amphibians and birds. The melatonin receptors couple to G proteins of the G(i/o) class, leading to the inhibition of adenylate cyclase.


Pssm-ID: 320524 [Multi-domain]  Cd Length: 279  Bit Score: 44.51  E-value: 3.52e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 45647651 238 TLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFL---WLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15402 212 TMFVVFVLFAVCWAPLNFIGLAVAVDPETIVPRIPEWLFVasyYMAYFNSCLNAIIYGLLNQNFRREY 279
7tmA_V2R cd15388
vasopressin receptor 2, member of the class A family of seven-transmembrane G protein-coupled ...
211-294 3.70e-05

vasopressin receptor 2, member of the class A family of seven-transmembrane G protein-coupled receptors; The vasopressin type 2 receptor (V2R) is a G(s)-coupled receptor that controls balance of water and sodium ion by regulating their reabsorption in the renal collecting duct. Mutations of V2R is responsible for nephrogenic diabetes insipidus. Vasopressin (also known as arginine vasopressin or anti-diuretic hormone) is synthesized in the hypothalamus and is released from the posterior pituitary gland. The actions of vasopressin are mediated by the interaction of this hormone with three receptor subtypes: V1aR, V1bR, and V2R. These subtypes are differ in localization, function, and signaling pathways. Activation of V1aR and V1bR stimulate phospholipase C, while activation of V2R stimulates adenylate cyclase. Although vasopressin and oxytocin differ only by two amino acids and stimulate the same cAMP/PKA pathway, they have divergent physiological functions. Vasopressin is involved in regulating blood pressure and the balance of water and sodium ions, whereas oxytocin plays an important role in the uterus during childbirth and in lactation.


Pssm-ID: 320510 [Multi-domain]  Cd Length: 295  Bit Score: 44.76  E-value: 3.70e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 211 ASIANPHQKLAKRRQLLEAKRERKAAQTLAIITgAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVI 290
Cdd:cd15388 205 VKKKQLLSSRASSVAEVSKAMIKTVKMTLVIVL-VYVLCWAPFFLVQLWSVWDPKAPTEGATFTILMLLASLNSCTNPWI 283

                ....
gi 45647651 291 YTIF 294
Cdd:cd15388 284 YMAF 287
7tmA_CXCR4 cd15179
CXC chemokine receptor type 4, member of the class A family of seven-transmembrane G ...
231-299 4.06e-05

CXC chemokine receptor type 4, member of the class A family of seven-transmembrane G protein-coupled receptors; CXCR4 is the only known G protein-coupled chemokine receptor for the key homeostatic ligand CXCL12, which is constitutively secreted by bone marrow stromal cells. Atypical chemokine receptor CXCR7 (ACKR3) also binds CXCL12, but activates signaling in a G protein-independent manner. CXCR4 is also a co-receptor for HIV infection and plays critical roles in the development of immune system during both lymphopoiesis and myelopoiesis. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines.


Pssm-ID: 341334 [Multi-domain]  Cd Length: 278  Bit Score: 44.37  E-value: 4.06e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLC------KECEIHTAVA---SLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15179 198 QKRKALKTTVILILAFFACWLPYYIGISIDTFMlleiikQSCEMEQTVHkwiSITEALAFFHCCLNPILYAFLGAKFK 275
7tmA_CB1 cd15340
cannabinoid receptor subtype 1, member of the class A family of seven-transmembrane G ...
228-302 4.70e-05

cannabinoid receptor subtype 1, member of the class A family of seven-transmembrane G protein-coupled receptors; Cannabinoid receptors belong to the class A G-protein coupled receptor superfamily. Two types of cannabinoid receptors, CB1 and CB2, have been identified so far. They are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system.


Pssm-ID: 320462 [Multi-domain]  Cd Length: 292  Bit Score: 44.51  E-value: 4.70e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 228 EAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15340 218 QTRMDIRLAKTLVLILVVLIICWGPLLAIMVYDVFGKMNKLIKTVFAFCSMLCLLNSTVNPIIYALRSKDLRHAF 292
7tmA_Prostanoid_R cd14981
G protein-coupled receptors for prostanoids, member of the class A family of ...
220-302 6.31e-05

G protein-coupled receptors for prostanoids, member of the class A family of seven-transmembrane G protein-coupled receptors; Prostanoids are the cyclooxygenase (COX) metabolites of arachidonic acid, which include the prostaglandins (PGD2, PGE2, PGF2alpha), prostacyclin (PGI2), and thromboxane A2 (TxA2). These five major bioactive prostanoids acts as mediators or modulators in a wide range of physiological and pathophysiological processes within the kidney and play important roles in inflammation, platelet aggregation, and vasoconstriction/relaxation, among many others. They act locally by preferentially interacting with G protein-coupled receptors designated DP, EP. FP, IP, and TP, respectively. The phylogenetic tree suggests that the prostanoid receptors can be grouped into two major branches: G(s)-coupled (DP1, EP2, EP4, and IP) and G(i)- (EP3) or G(q)-coupled (EP1, FP, and TP), forming three clusters.


Pssm-ID: 320112 [Multi-domain]  Cd Length: 288  Bit Score: 43.77  E-value: 6.31e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 220 LAKRRQLLEAKRERKAAQT-----------LAIITGAFVICWLPFFV-MALTMSLCKECEIHTAVasLFLWLGYFNSTLN 287
Cdd:cd14981 195 LRMRRRKKRHRRSRRSARRqkrneiqmvvlLLAITVVFSVCWLPLMIrVLINATGDSEKNGKTDL--LAVRMASWNQILD 272
                        90
                ....*....|....*.
gi 45647651 288 PVIYTIFNPE-FRRAF 302
Cdd:cd14981 273 PWVYILLRKEvLRRLY 288
7tmA_Opsin5_neuropsin cd15074
neuropsin (Opsin-5), member of the class A family of seven-transmembrane G protein-coupled ...
223-299 6.43e-05

neuropsin (Opsin-5), member of the class A family of seven-transmembrane G protein-coupled receptors; Neuropsin, also known as Opsin-5, is a photoreceptor protein expressed in the retina, brain, testes, and spinal cord. Neuropsin belongs to the type 2 opsin family of the class A G-protein coupled receptors. Mammalian neuropsin activates Gi protein-mediated photo-transduction pathway in a UV-dependent manner, whereas, in non-mammalian vertebrates, neuropsin is involved in regulating the photoperiodic control of seasonal reproduction in birds such as quail. As with other opsins, it may also act as a retinal photoisomerase.


Pssm-ID: 320202 [Multi-domain]  Cd Length: 284  Bit Score: 43.80  E-value: 6.43e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 223 RRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALtMSLCKECE----IHTAVASLFlwlGYFNSTLNPVIYTIFNPEF 298
Cdd:cd15074 205 SRSKRQHKIERKVTKVAVLICAGFLIAWTPYAVVSM-WSAFGSPDsvpiLASILPALF---AKSSCMYNPIIYLLFSSKF 280

                .
gi 45647651 299 R 299
Cdd:cd15074 281 R 281
7tmA_Chemokine_R cd14984
classical and atypical chemokine receptors, member of the class A family of ...
224-300 6.80e-05

classical and atypical chemokine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. In addition to these classical chemokine receptors, there exists a subfamily of atypical chemokine receptors (ACKRs) that are unable to couple to G-proteins and, instead, they preferentially mediate beta-arrestin dependent processes, such as receptor internalization, after ligand binding. The classical chemokine receptors contain a conserved DRYLAIV motif in the second intracellular loop, which is required for G-protein coupling. However, the ACKRs lack this conserved motif and fail to couple to G-proteins and induce classical GPCR signaling. Five receptors have been identified for the ACKR family, including CC-chemokine receptors like 1 and 2 (CCRL1 and CCRL2), CXCR7, Duffy antigen receptor for chemokine (DARC), and D6. Both ACKR1 (DARC) and ACKR3 (CXCR7) show low sequence homology to the classic chemokine receptors.


Pssm-ID: 341319 [Multi-domain]  Cd Length: 278  Bit Score: 43.74  E-value: 6.80e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 224 RQLLEAKRE--RKAAQTLAIITGAFVICWLPFFVMALTMSL------CKECEIHTAVASLFLW---LGYFNSTLNPVIYT 292
Cdd:cd14984 189 RTLLRARNHkkHRALRVIFAVVVVFFLCWLPYNIVLLLDTLqllgiiSRSCELSKSLDYALQVtesLAFSHCCLNPVLYA 268

                ....*...
gi 45647651 293 IFNPEFRR 300
Cdd:cd14984 269 FVGVKFRK 276
7tmA_SREB3_GPR173 cd15217
super conserved receptor expressed in brain 3 (or GPR173), member of the class A family of ...
202-300 7.10e-05

super conserved receptor expressed in brain 3 (or GPR173), member of the class A family of seven-transmembrane G protein-coupled receptors; The SREB (super conserved receptor expressed in brain) subfamily consists of at least three members, named SREB1 (GPR27), SREB2 (GPR85), and SREB3 (GPR173). They are very highly conserved G protein-coupled receptors throughout vertebrate evolution, however no endogenous ligands have yet been identified. SREB2 is greatly expressed in brain regions involved in psychiatric disorders and cognition, such as the hippocampal dentate gyrus. Genetic studies in both humans and mice have shown that SREB2 influences brain size and negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent cognitive function, all of which are suggesting a potential link between SREB2 and schizophrenia. All three SREB genes are highly expressed in differentiated hippocampal neural stem cells. Furthermore, all GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320345 [Multi-domain]  Cd Length: 329  Bit Score: 43.78  E-value: 7.10e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 202 AGVGLGGVLASIANPHQKL-AKRRQLL---EAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFL 277
Cdd:cd15217 225 AGFGRGPMPPTLLGIRQNAhTANRRLLgmeEFKAEKRLGRMFYVITLSFLVLWSPYIVACYWRVFVKACSIPHRYLSTAV 304
                        90       100
                ....*....|....*....|...
gi 45647651 278 WLGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15217 305 WMSFAQAGVNPIVCFLLNKDLKK 327
7tmA_NMU-R2 cd15357
neuromedin U receptor subtype 2, member of the class A family of seven-transmembrane G ...
233-302 7.24e-05

neuromedin U receptor subtype 2, member of the class A family of seven-transmembrane G protein-coupled receptors; Neuromedin U (NMU) is a highly conserved neuropeptide with a common C-terminal heptapeptide sequence (FLFRPRN-amide) found at the highest levels in the gastrointestinal tract and pituitary gland of mammals. Disruption or replacement of residues in the conserved heptapeptide region can result in the reduced ability of NMU to stimulate smooth-muscle contraction. Two G-protein coupled receptor subtypes, NMU-R1 and NMU-R2, with a distinct expression pattern, have been identified to bind NMU. NMU-R1 is expressed primarily in the peripheral nervous system, while NMU-R2 is mainly found in the central nervous system. Neuromedin S, a 36 amino-acid neuropeptide that shares a conserved C-terminal heptapeptide sequence with NMU, is a highly potent and selective NMU-R2 agonist. Pharmacological studies have shown that both NMU and NMS inhibit food intake and reduce body weight, and that NMU increases energy expenditure.


Pssm-ID: 320479 [Multi-domain]  Cd Length: 293  Bit Score: 43.70  E-value: 7.24e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 233 RKA-AQTLAIITGAFVICWLPF--------FVMALTMSLCKECEIHTAVASLFLwlgYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15357 218 RKSvTKMLFVLVLVFAICWAPFhvdrlffsFVVEWTEPLANVFNLIHVVSGVFF---YLSSAVNPIIYNLLSRRFRTAF 293
7tmA_CXCR5 cd15181
CXC chemokine receptor type 5, member of the class A family of seven-transmembrane G ...
232-302 8.52e-05

CXC chemokine receptor type 5, member of the class A family of seven-transmembrane G protein-coupled receptors; CXCR5 is a B-cell selective receptor that binds specifically to the homeostatic chemokine CXCL13 and regulates adaptive immunity. The receptor is found on all peripheral blood and tonsillar B cells and is involved in lymphocyte migration (homing) to specific tissues and development of normal lymphoid tissue. Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines.


Pssm-ID: 341336 [Multi-domain]  Cd Length: 281  Bit Score: 43.58  E-value: 8.52e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 232 ERKAAQTLAI-ITGAFVICWLPF----FVMALTM--SLCKECEIHTAVASLFL---WLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15181 201 QKQKAIRVAIlVTLVFCLCWLPYniviFLDTLDDlkAVVKNCKLNDLLDAAITvteSLGFSHCCLNPILYAFIGVKFRND 280

                .
gi 45647651 302 F 302
Cdd:cd15181 281 L 281
7tmA_AT1R cd15192
type 1 angiotensin II receptor, member of the class A family of seven-transmembrane G ...
224-302 9.10e-05

type 1 angiotensin II receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Angiotensin II (Ang II), the main effector in the renin-angiotensin system, plays a crucial role in the regulation of cardiovascular homeostasis through its type 1 (AT1) and type 2 (AT2) receptors. Ang II contributes to cardiovascular diseases such as hypertension and atherosclerosis via AT1R activation. Ang II increases blood pressure through Gq-mediated activation of phospholipase C, resulting in phosphoinositide (PI) hydrolysis and increased intracellular calcium levels. Through the AT2R, Ang II counteracts the vasoconstrictor action of AT1R and thereby induces vasodilation, sodium excretion, and reduction of blood pressure. Moreover, AT1R promotes cell proliferation, whereas AT2R inhibits proliferation and stimulates cell differentiation. The AT2R is highly expressed during fetal development, however it is scarcely present in adult tissues and is induced in pathological conditions. Generally, the AT1R mediates many actions of Ang II, while the AT2R is involved in the regulation of blood pressure and renal function.


Pssm-ID: 320320 [Multi-domain]  Cd Length: 285  Bit Score: 43.57  E-value: 9.10e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 224 RQLLEAKRERKAAQT-------LAIITGAFVICWLPFFVMAL-----TMSLCKECEIHTAVAS---LFLWLGYFNSTLNP 288
Cdd:cd15192 192 KALKKAYEIQRNKPRndeifkmIMAVVLFFFFCWIPHQIFTFldvliQLKVIQDCHIADIVDTampFTICIAYFNSCLNP 271
                        90
                ....*....|....
gi 45647651 289 VIYTIFNPEFRRAF 302
Cdd:cd15192 272 ILYGFVGKNFRKKF 285
7tmA_RNL3R1 cd15926
relaxin 3 receptor 1 (RNL3R1), member of the class A family of seven-transmembrane G ...
229-302 9.12e-05

relaxin 3 receptor 1 (RNL3R1), member of the class A family of seven-transmembrane G protein-coupled receptors; The G protein-coupled receptor RNL3R1 is also known as GPCR135, relaxin family peptide receptor 3 (RXFP3), and somatostatin- and angiotensin-like peptide receptor (SALPR). RNL3/relaxin-3, a member of the insulin superfamily, is an endogenous neuropeptide ligand for RNL3R1. RNL3R1 is predominantly expressed in brain regions and implicated in stress, anxiety, and feeding, and metabolism. RNL3R1 signals through G(i) protein and inhibit adenylate cyclase, thereby inhibit cAMP accumulation, and also activates Erk1/2 signaling pathway.


Pssm-ID: 320592 [Multi-domain]  Cd Length: 288  Bit Score: 43.35  E-value: 9.12e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCK------ECEIHTAVASLF---LWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15926 206 TKRRSKVTKSVTIVVLSFFLCWLPNQALTTWGILIKlnvvhfSYEYFTTQVYIFpitVCLAHSNSCLNPILYCLMRREFR 285

                ...
gi 45647651 300 RAF 302
Cdd:cd15926 286 KAL 288
7tmA_CXCR1_2 cd15178
CXC chemokine receptor types 1 and 2, member of the class A family of seven-transmembrane G ...
245-302 1.36e-04

CXC chemokine receptor types 1 and 2, member of the class A family of seven-transmembrane G protein-coupled receptors; CXCR1 and CXCR2 are closely related chemotactic receptors for a group of CXC chemokines distinguished by the presence of the amino acid motif ELR immediately adjacent to their CXC motif. Expression of CXCR1 and CXCR2 is strictly controlled in neutrophils by external stimuli such as lipopolysaccharide (LPS), tumor necrosis factor (TNF)-alpha, Toll-like receptor agonists, and nitric oxide. CXCL8 (formerly known as interleukin-8) binds with high-affinity and activates both receptors. CXCR1 also binds CXCL7 (neutrophil-activating protein-2), whereas CXCR2 non-selectively binds to all seven ELR-positive chemokines (CXCL1-7). Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines.


Pssm-ID: 341333 [Multi-domain]  Cd Length: 279  Bit Score: 42.65  E-value: 1.36e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 245 AFVICWLPFFVMALTMSLCK------ECEIHTAVASLFLW---LGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15178 213 AFLLCWLPYNVTVLIDTLMRtkliteTCELRNHVDVALYVtqiLGFLHSCINPVLYAFIGQKFRNNL 279
7tmA_Gal2_Gal3_R cd15097
galanin receptor subtypes 2 and 3, member of the class A family of seven-transmembrane G ...
228-302 1.38e-04

galanin receptor subtypes 2 and 3, member of the class A family of seven-transmembrane G protein-coupled receptors; The G protein-coupled galanin receptors bind galanin, a neuropeptide that is widely expressed in the brain, peripheral tissues, and endocrine glands. Three receptors subtypes have been so far identified: GAL1, GAL2, and GAL3. The specific functions of each subtype remains mostly unknown, although galanin is thought to be involved in a variety of neuronal functions such as hormone release and food intake. Galanin is implicated in numerous neurological and psychiatric diseases including Alzheimer's disease, depression, eating disorders, epilepsy and stroke, among many others.


Pssm-ID: 320225 [Multi-domain]  Cd Length: 279  Bit Score: 42.89  E-value: 1.38e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 228 EAKR-ERKAAQTLAIITGAFVICWLPFFVMALTMsLCKECEIHTAVASLFLW---LGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15097 202 ESKRaKRKVTKMIIIVTALFCLCWLPHHVVILCY-LYGDFPFNQATYAFRLLshcMAYANSCLNPIVYALVSKHFRKGF 279
7tmA_Mel1 cd15209
melatonin receptor 1, member of the class A family of seven-transmembrane G protein-coupled ...
221-302 1.42e-04

melatonin receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors; Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring sleep-promoting chemical found in vertebrates, invertebrates, bacteria, fungi, and plants. In mammals, melatonin is secreted by the pineal gland and is involved in regulation of circadian rhythms. Its production peaks during the nighttime, and is suppressed by light. Melatonin is shown to be synthesized in other organs and cells of many vertebrates, including the Harderian gland, leukocytes, skin, and the gastrointestinal (GI) tract, which contains several hundred times more melatonin than the pineal gland and is involved in the regulation of GI motility, inflammation, and sensation. Melatonin exerts its pleiotropic physiological effects through specific membrane receptors, named MT1A, MT1B, and MT1C, which belong to the class A rhodopsin-like G-protein coupled receptor family. MT1A and MT1B subtypes are present in mammals, whereas MT1C subtype has been found in amphibians and birds. The melatonin receptors couple to G proteins of the G(i/o) class, leading to the inhibition of adenylate cyclase.


Pssm-ID: 320337 [Multi-domain]  Cd Length: 279  Bit Score: 42.84  E-value: 1.42e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 221 AKRRQLLEAKRERKAAQ-----TLAIITGAFVICWLPFFVMALTMSLC-KECEIHTA----VASLFLwlGYFNSTLNPVI 290
Cdd:cd15209 190 VRQRVKPDQRPKLKPADvrnflTMFVVFVLFAVCWAPLNFIGLAVAINpKEMAPKIPewlfVASYFM--AYFNSCLNAII 267
                        90
                ....*....|..
gi 45647651 291 YTIFNPEFRRAF 302
Cdd:cd15209 268 YGLLNQNFRKEY 279
7tmA_Adenosine_R_A3 cd15070
adenosine receptor subtype A3, member of the class A family of seven-transmembrane G ...
230-291 1.51e-04

adenosine receptor subtype A3, member of the class A family of seven-transmembrane G protein-coupled receptors; The A3 receptor, a member of the adenosine receptor family of G protein-coupled receptors, is coupled to G proteins of the inhibitory G(i) family, which lead to inhibition of adenylate cyclase and thereby lowering the intracellular cAMP levels. The A3 receptor has a sustained protective function in the heart during cardiac ischemia and contributes to inhibition of neutrophil degranulation in neutrophil-mediated tissue injury. Moreover, activation of A3 receptor by adenosine protects astrocytes from cell death induced by hypoxia.


Pssm-ID: 320198 [Multi-domain]  Cd Length: 280  Bit Score: 42.84  E-value: 1.51e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCkeCEIHTAVASLFLWLGYFNSTLNPVIY 291
Cdd:cd15070 210 GREFKTAKSLALVLFLFAVCWLPLSIINCVVYFN--PKVPKIALYLGILLSHANSMMNPIVY 269
7tmA_GPR6 cd15962
G protein-coupled receptor 6, member of the class A family of seven-transmembrane G ...
233-301 1.51e-04

G protein-coupled receptor 6, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR3, GPR6, and GPR12 form a subfamily of constitutively active G-protein coupled receptors with dual coupling to G(s) and G(i) proteins. These three orphan receptors are involved in the regulation of cell proliferation and survival, neurite outgrowth, cell clustering, and maintenance of meiotic prophase arrest. They constitutively activate adenylate cyclase to a similar degree as that seen with fully activated G(s)-coupled receptors, and are also able to constitutively activate inhibitory G(i/o) proteins. Lysophospholipids such as sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine have been detected as the high-affinity ligands for Gpr6 and Gpr12, respectively, which show high sequence homology with GPR3.


Pssm-ID: 320628 [Multi-domain]  Cd Length: 268  Bit Score: 42.61  E-value: 1.51e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 233 RKAAQTLAIITGAFVICWLPFFVMALTMSlCKECEIHTAVAslfLWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15962 203 KKGVSTLAIILGTFGASWLPFAIYCVVGD-HEYPAVYTYAT---LLPATYNSMINPIIYAYRNQEIQRS 267
7tmA_Mel1B cd15400
melatonin receptor subtype 1B, member of the class A family of seven-transmembrane G ...
238-302 1.71e-04

melatonin receptor subtype 1B, member of the class A family of seven-transmembrane G protein-coupled receptors; Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring sleep-promoting chemical found in vertebrates, invertebrates, bacteria, fungi, and plants. In mammals, melatonin is secreted by the pineal gland and is involved in regulation of circadian rhythms. Its production peaks during the nighttime, and is suppressed by light. Melatonin is shown to be synthesized in other organs and cells of many vertebrates, including the Harderian gland, leukocytes, skin, and the gastrointestinal (GI) tract, which contains several hundred times more melatonin than the pineal gland and is involved in the regulation of GI motility, inflammation, and sensation. Melatonin exerts its pleiotropic physiological effects through specific membrane receptors, named MT1A, MT1B, and MT1C, which belong to the class A rhodopsin-like G-protein coupled receptor family. MT1A and MT1B subtypes are present in mammals, whereas MT1C subtype has been found in amphibians and birds. The melatonin receptors couple to G proteins of the G(i/o) class, leading to the inhibition of adenylate cyclase.


Pssm-ID: 320522 [Multi-domain]  Cd Length: 279  Bit Score: 42.53  E-value: 1.71e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 45647651 238 TLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFL---WLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15400 212 TMFVVFVIFAICWAPLNLIGLAVAINPQEMAPKVPEWLFVvsyFMAYFNSCLNAIIYGLLNQNFRKEY 279
7tmA_GPR45 cd15403
G protein-coupled receptor 45, member of the class A family of seven-transmembrane G ...
234-301 2.29e-04

G protein-coupled receptor 45, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup includes the human orphan receptor GPR45 and closely related proteins found in vertebrates. GPR45 is also called PSP24 in Xenopus and PSP24-alpha (or PSP24-1) in mammals. GPR45 shows the highest sequence homology with GPR63 (PSP24-beta, or PSP24-2). PSP24 was originally identified as a novel, high-affinity lysophosphatidic acid (LPA) receptor in Xenopus laevis oocytes; however, PSP24 receptors (GPR45 and GPR63) have not been shown to be activated by LPA. Mammalian PSP24 receptors are highly expressed in neuronal cells of cerebellum and their expression level remains constant from the early embryonic stages to adulthood, suggesting the important role of PSP24s in brain neuronal functions. Members of this subgroup contain the highly conserved Asp-Arg-Tyr/Phe (DRY/F) motif found in the third transmembrane helix (TM3) of the rhodopsin-like class A receptors which is important for efficient G protein-coupled signal transduction. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320525 [Multi-domain]  Cd Length: 301  Bit Score: 42.14  E-value: 2.29e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSLCKE---CEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15403 230 RAFTTILILFVGFSLCWLPHTVFSLLSVFSRRfyySSSFYPISTCVLWLSYLKSVFNPVIYCWRIKKFREA 300
7tmA_GPR15 cd15194
G protein-coupled receptor 15, member of the class A family of seven-transmembrane G ...
217-301 2.34e-04

G protein-coupled receptor 15, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR15, also called as Brother of Bonzo (BOB), is an orphan G-protein coupled receptor that was originally identified as a co-receptor for human immunodeficiency virus. GPR15 is upregulated in patients with rheumatoid arthritis and shares high sequence homology with angiotensin II type AT1 and AT2 receptors; however, its endogenous ligand is unknown. GPR15 controls homing of T cells, especially FOXP3(+) regulatory T cells, to the large intestine mucosa and thereby mediates local immune homeostasis. Moreover, GRP15-deficient mice were shown to be prone to develop more severe large intestine inflammation.


Pssm-ID: 320322 [Multi-domain]  Cd Length: 281  Bit Score: 42.15  E-value: 2.34e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 217 HQKLAKRRQLLeakreRKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLG--------YFNSTLNP 288
Cdd:cd15194 193 YQKSGKHQKKL-----RKSIKIVFIVVAAFVFSWMPFNLFKALAIASGLQVEVTCLPYTLAQLGmevsaplaFANSCANP 267
                        90
                ....*....|...
gi 45647651 289 VIYTIFNPEFRRA 301
Cdd:cd15194 268 FIYYFFDRYIRRA 280
7tmA_GPR63 cd15404
G protein-coupled receptor 63, member of the class A family of seven-transmembrane G ...
234-301 2.74e-04

G protein-coupled receptor 63, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup includes the human orphan receptor GPR63, which is also called PSP24-beta or PSP24-2, and its closely related proteins found in vertebrates. GPR63 shares the highest sequence homology with GPR45 (Xenopus PSP24, mammalian PSP24-alpha or PSP24-1). PSP24 was originally identified as a novel, high-affinity lysophosphatidic acid (LPA) receptor in Xenopus laevis oocytes; however, PSP24 receptors (GPR45 and GPR63) have not been shown to be activated by LPA. Mammalian PSP24 receptors are highly expressed in neuronal cells of cerebellum and their expression level remains constant from the early embryonic stages to adulthood, suggesting the important role of PSP24s in brain neuronal functions. Members of this subgroup contain the highly conserved Asp-Arg-Tyr/Phe (DRY/F) motif found in the third transmembrane helix (TM3) of the rhodopsin-like class A receptors which is important for efficient G protein-coupled signal transduction. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320526 [Multi-domain]  Cd Length: 265  Bit Score: 41.75  E-value: 2.74e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTA---VASLFLWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15404 194 RAFTTILILFIVFTVCWAPFTTYSLVATFNSHFYHKHNffeISTWLLWLCYLKSALNPLIYYWRIKKFRDA 264
7tmA_GPR135 cd15212
G protein-coupled receptor 135, member of the class A family of seven-transmembrane G ...
232-296 3.18e-04

G protein-coupled receptor 135, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR135, also known as the somatostatin- and angiotensin-like peptide receptor (SALPR), is found in various tissues including eye, brain, cervix, stomach, and testis. Pharmacological studies have shown that relaxin-3 (R3) is a high-affinity endogenous ligand for GPR135. R3 has recently been identified as a new member of the insulin/relaxin family of peptide hormones and is exclusively expressed in the brain neurons. In addition to GPR135, R3 also acts as an agonist for GPR142, a pseudogene in the rat, and can activate LGR7 (leucine repeat-containing G-protein receptor-7), which is the main receptor for relaxin-1 (R1) and relaxin-2 (R2). While R1 and R2 are hormones primarily associated with reproduction and pregnancy, R3 is involved in neuroendocrine and sensory processing. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320340 [Multi-domain]  Cd Length: 285  Bit Score: 41.68  E-value: 3.18e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 232 ERKAAQTLAIITGAFVICWLPFFVMALTMSLcKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNP 296
Cdd:cd15212 216 EMRTATTVLIMIVFIICCWGPYCLLGLVAAA-GGYQFPPLMDTVAIWMAWANGAINPLIYAIRNP 279
7tmA_SWS2_opsin cd15077
short wave-sensitive 2 opsins, member of the class A family of seven-transmembrane G ...
230-299 3.32e-04

short wave-sensitive 2 opsins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes Short Wave-Sensitive opsin 2 (SWS2), which mediates visual transduction in response to light at short wavelengths (violet to blue). Vertebrate cone opsins are expressed in cone photoreceptor cells of the retina and involved in mediating photopic vision, which allows color perception. The cone opsins can be classified into four classes according to their peak absorption wavelengths: SWS1 (ultraviolet sensitive), SWS2 (short wave-sensitive), MWS/LWS (medium/long wave-sensitive), and RH2 (medium wave-sensitive, rhodopsin-like opsins). Members of this group belong to the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops.


Pssm-ID: 320205 [Multi-domain]  Cd Length: 280  Bit Score: 41.74  E-value: 3.32e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15077 208 KAEREVTKMVVVMVLGFLVCWLPYASFALWVVTNRGEPFDLRLASIPSVFSKASTVYNPVIYVFMNKQFR 277
7tmA_P2Y6_P2Y3-like cd15968
P2Y purinoceptors 6 and 3, and similar proteins, member of the class A family of ...
229-300 3.46e-04

P2Y purinoceptors 6 and 3, and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes P2Y receptor 6 (P2Y6), P2Y3, and P2Y3-like proteins. These receptors belong to the G(i) class of a family of purinergic G-protein coupled receptors. In the CNS, P2Y6 plays a role in microglia activation and phagocytosis, and is involved in the secretion of interleukin from monocytes and macrophages in the immune system. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14).


Pssm-ID: 320634 [Multi-domain]  Cd Length: 285  Bit Score: 41.69  E-value: 3.46e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 229 AKRERKAAQTLAIITGAFVICWLPFFV-----MALTMSLCKECEIHTAVASLF-LW--LGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15968 204 QARRRKSIRTIVTVTLLFALCFLPFHItrtiyLAVRVTPGVPCHVLEAVAACYkITrpLASANSVLNPLLYFLTKKKFGR 283
7tmA_CCK-BR cd15979
cholecystokinin receptor type B, member of the class A family of seven-transmembrane G ...
224-302 4.76e-04

cholecystokinin receptor type B, member of the class A family of seven-transmembrane G protein-coupled receptors; Cholecystokinin receptors (CCK-AR and CCK-BR) are a group of G-protein coupled receptors which bind the peptide hormones cholecystokinin (CCK) or gastrin. CCK, which facilitates digestion in the small intestine, and gastrin, a major regulator of gastric acid secretion, are highly similar peptides. Like gastrin, CCK is a naturally-occurring linear peptide that is synthesized as a preprohormone, then proteolytically cleaved to form a family of peptides with the common C-terminal sequence (Gly-Trp-Met-Asp-Phe-NH2), which is required for full biological activity. CCK-AR (type A, alimentary; also known as CCK1R) is found abundantly on pancreatic acinar cells and binds only sulfated CCK-peptides with very high affinity, whereas CCK-BR (type B, brain; also known as CCK2R), the predominant form in the brain and stomach, binds CCK or gastrin and discriminates poorly between sulfated and non-sulfated peptides. CCK is implicated in regulation of digestion, appetite control, and body weight, and is involved in neurogenesis via CCK-AR. There is some evidence to support that CCK and gastrin, via their receptors, are involved in promoting cancer development and progression, acting as growth and invasion factors.


Pssm-ID: 320645 [Multi-domain]  Cd Length: 275  Bit Score: 41.34  E-value: 4.76e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 224 RQLLEAKRerkAAQTLAIITGAFVICWLPFFVmALTMSLCKECEIHTAVA----SLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15979 197 RGLLAKKR---VIRMLVVIVAMFFLCWLPIFS-ANTWRAFDPLSAHRALSgapiSFIHLLSYTSACVNPLVYCFMNRRFR 272

                ...
gi 45647651 300 RAF 302
Cdd:cd15979 273 KAF 275
7tmA_NMU-R1 cd15358
neuromedin U receptor subtype 1, member of the class A family of seven-transmembrane G ...
223-302 4.84e-04

neuromedin U receptor subtype 1, member of the class A family of seven-transmembrane G protein-coupled receptors; Neuromedin U (NMU) is a highly conserved neuropeptide with a common C-terminal heptapeptide sequence (FLFRPRN-amide) found at the highest levels in the gastrointestinal tract and pituitary gland of mammals. Disruption or replacement of residues in the conserved heptapeptide region can result in the reduced ability of NMU to stimulate smooth-muscle contraction. Two G-protein coupled receptor subtypes, NMU-R1 and NMU-R2, with a distinct expression pattern, have been identified to bind NMU. NMU-R1 is expressed primarily in the peripheral nervous system, while NMU-R2 is mainly found in the central nervous system. Neuromedin S, a 36 amino-acid neuropeptide that shares a conserved C-terminal heptapeptide sequence with NMU, is a highly potent and selective NMU-R2 agonist. Pharmacological studies have shown that both NMU and NMS inhibit food intake and reduce body weight, and that NMU increases energy expenditure.


Pssm-ID: 320480 [Multi-domain]  Cd Length: 305  Bit Score: 41.29  E-value: 4.84e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 223 RRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLC--KECEIHTA------VASLFLWLGyfnSTLNPVIYTIF 294
Cdd:cd15358 221 RRIQQEKRRRRQVTKMLFVLVVVFGICWAPFHTDRLMWSFIsqWTGELHLAfqyvhiISGVFFYLS---SAANPVLYNLM 297

                ....*...
gi 45647651 295 NPEFRRAF 302
Cdd:cd15358 298 STRFREMF 305
7tmA_NTSR1 cd15355
neurotensin receptor subtype 1, member of the class A family of seven-transmembrane G ...
233-302 5.03e-04

neurotensin receptor subtype 1, member of the class A family of seven-transmembrane G protein-coupled receptors; Neurotensin (NTS) is a 13 amino-acid neuropeptide that functions as both a neurotransmitter and a hormone in the nervous system and peripheral tissues, respectively. NTS exerts various biological activities through activation of the G protein-coupled neurotensin receptors, NTSR1 and NTSR2. In the brain, NTS is involved in the modulation of dopamine neurotransmission, opioid-independent analgesia, hypothermia, and the inhibition of food intake, while in the periphery NTS promotes the growth of various normal and cancer cells and acts as a paracrine and endocrine modulator of the digestive tract. The third neurotensin receptor, NTSR3 or also called sortilin, is not a G protein-coupled receptor.


Pssm-ID: 320477 [Multi-domain]  Cd Length: 310  Bit Score: 41.37  E-value: 5.03e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 233 RKAAQTLAIITGAFVICWLPFFVMALTMslckeCEIHTAVASLFLW------------LGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15355 234 RHGVLVLRAVVIAFVVCWLPYHVRRLMF-----CYVSDEQWTTFLYdfyhyfymltnvLFYVSSAINPILYNLVSANFRQ 308

                ..
gi 45647651 301 AF 302
Cdd:cd15355 309 IF 310
7tmA_NPY4R cd15397
neuropeptide Y receptor type 4, member of the class A family of seven-transmembrane G ...
219-300 6.37e-04

neuropeptide Y receptor type 4, member of the class A family of seven-transmembrane G protein-coupled receptors; NPY is a 36-amino acid peptide neurotransmitter with a C-terminal tyrosine amide residue that is widely distributed in the brain and the autonomic nervous system of many mammalian species. NPY exerts its functions through five, G-protein coupled receptor subtypes including NPY1R, NPY2R, NPY4R, NPY5R, and NPY6R; however, NPY6R is not functional in humans. NYP receptors are also activated by its two other family members, peptide YY (PYY) and pancreatic polypeptide (PP). They typically couple to G(i) or G(o) proteins, which leads to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels, and are involved in diverse physiological roles including appetite regulation, circadian rhythm, and anxiety.


Pssm-ID: 320519 [Multi-domain]  Cd Length: 293  Bit Score: 40.88  E-value: 6.37e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 219 KLAKRRQLLEAKRE--RKAAQT------LAIITGAFVICWLPFFVMAL-------TMSLCKeceiHTAVASLFLWLGYFN 283
Cdd:cd15397 199 RLRRRKDMLERRGEynRRAGHSkrinvmLVSLVAAFALCWLPLNVFNAiadwnheAIPHCQ----HNLIFSLCHLAAMAS 274
                        90
                ....*....|....*..
gi 45647651 284 STLNPVIYTIFNPEFRR 300
Cdd:cd15397 275 TCVNPIIYGFLNSNFKK 291
7tmA_GPR174-like cd15152
putative purinergic receptor GPR174, member of the class A family of seven-transmembrane G ...
232-300 8.21e-04

putative purinergic receptor GPR174, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR174 has been recently identified as a lysophosphatidylserine receptor that enhances intracellular cAMP formation by coupling to a G(s) protein. GPR174 is a member of the rhodopsin-like, class A GPCRs, which is a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320280 [Multi-domain]  Cd Length: 282  Bit Score: 40.48  E-value: 8.21e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 232 ERKAAQTLAIITGAFVICWLP--------FFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15152 204 KKKALKMILTCAVVFLICFAPyhisfpldFLVKSNKIKSCTARKVILIFHPVALCLASLNSCLDPVIYYFTTDEFKR 280
7tmA_GPR31 cd15199
G protein-coupled receptor 31, member of the class A family of seven-transmembrane G ...
218-302 8.32e-04

G protein-coupled receptor 31, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR31, also known as 12-(S)-HETE receptor, is a high-affinity receptor for 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid. Phylogenetic analysis showed that GPR31 and oxoeicosanoid receptor 1 (OXER1, GPR170) are the most closely related receptors to the hydroxycarboxylic acid receptor family (HCARs). GPR31, like OXER1, activates the ERK1/2 (MAPK3/MAPK1) pathway of intracellular signaling, but unlike the OXER1, does not cause increase in the cytosolic calcium level. GPR31 is also shown to activate NFkB. 12-(S)-HETE is a 12-lipoxygenase metabolite of arachidonic acid produced by mammalian platelets and tumor cells. It promotes tumor cells adhesion to endothelial cells and sub-endothelial matrix, which is a critical step for metastasis.


Pssm-ID: 320327 [Multi-domain]  Cd Length: 278  Bit Score: 40.55  E-value: 8.32e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 218 QKLAKR-RQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCK---ECEIHTAVASLF---LWLGYFNSTLNPVI 290
Cdd:cd15199 187 RRLKKRlRDVGKQPKLQRAMALVTSVVVVFGFCFLPCFLARVLMLIFQnkeSCNALNIAVHTYdvtMCLTYLNSVLDPIV 266
                        90
                ....*....|..
gi 45647651 291 YTIFNPEFRRAF 302
Cdd:cd15199 267 YCFSSPTFRSSY 278
7tmA_SREB1_GPR27 cd15216
super conserved receptor expressed in brain 1 (or GPR27), member of the class A family of ...
214-302 8.60e-04

super conserved receptor expressed in brain 1 (or GPR27), member of the class A family of seven-transmembrane G protein-coupled receptors; The SREB (super conserved receptor expressed in brain) subfamily consists of at least three members, named SREB1 (GPR27), SREB2 (GPR85), and SREB3 (GPR173). They are very highly conserved G protein-coupled receptors throughout vertebrate evolution, however no endogenous ligands have yet been identified. SREB2 is greatly expressed in brain regions involved in psychiatric disorders and cognition, such as the hippocampal dentate gyrus. Genetic studies in both humans and mice have shown that SREB2 influences brain size and negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent cognitive function, all of which are suggesting a potential link between SREB2 and schizophrenia. All three SREB genes are highly expressed in differentiated hippocampal neural stem cells. Furthermore, all GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320344 [Multi-domain]  Cd Length: 332  Bit Score: 40.39  E-value: 8.60e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 214 ANPHQKLAKRRQLLEAKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTI 293
Cdd:cd15216 244 AGPGRGARRLLVLEEFKTEKRLCKMFYAITLLFLLLWGPYVVASYLRVLVRPGAVPQAYLTASVWLTFAQAGINPVVCFL 323

                ....*....
gi 45647651 294 FNPEFRRAF 302
Cdd:cd15216 324 FNRELRDCF 332
7tmA_NMU-R cd15133
neuromedin U receptors, member of the class A family of seven-transmembrane G protein-coupled ...
217-302 8.72e-04

neuromedin U receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Neuromedin U (NMU) is a highly conserved neuropeptide with a common C-terminal heptapeptide sequence (FLFRPRN-amide) found at the highest levels in the gastrointestinal tract and pituitary gland of mammals. Disruption or replacement of residues in the conserved heptapeptide region can result in the reduced ability of NMU to stimulate smooth-muscle contraction. Two G-protein coupled receptor subtypes, NMU-R1 and NMU-R2, with a distinct expression pattern, have been identified to bind NMU. NMU-R1 is expressed primarily in the peripheral nervous system, while NMU-R2 is mainly found in the central nervous system. Neuromedin S, a 36 amino-acid neuropeptide that shares a conserved C-terminal heptapeptide sequence with NMU, is a highly potent and selective NMU-R2 agonist. Pharmacological studies have shown that both NMU and NMS inhibit food intake and reduce body weight, and that NMU increases energy expenditure.


Pssm-ID: 320261 [Multi-domain]  Cd Length: 298  Bit Score: 40.59  E-value: 8.72e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 217 HQKLAKRRqlleakRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECE---------IHTAVASLFlwlgYFNSTLN 287
Cdd:cd15133 214 GQLLQHPR------TRAQVTKMLFILVVVFAICWAPFHIDRLMWSFISDWTdnlhevfqyVHIISGVFF----YLSSAVN 283
                        90
                ....*....|....*
gi 45647651 288 PVIYTIFNPEFRRAF 302
Cdd:cd15133 284 PILYNLMSTRFREMF 298
7tmA_CCK-AR cd15978
cholecystokinin receptor type A, member of the class A family of seven-transmembrane G ...
225-302 9.60e-04

cholecystokinin receptor type A, member of the class A family of seven-transmembrane G protein-coupled receptors; Cholecystokinin receptors (CCK-AR and CCK-BR) are a group of G-protein coupled receptors which bind the peptide hormones cholecystokinin (CCK) or gastrin. CCK, which facilitates digestion in the small intestine, and gastrin, a major regulator of gastric acid secretion, are highly similar peptides. Like gastrin, CCK is a naturally-occurring linear peptide that is synthesized as a preprohormone, then proteolytically cleaved to form a family of peptides with the common C-terminal sequence (Gly-Trp-Met-Asp-Phe-NH2), which is required for full biological activity. CCK-AR (type A, alimentary; also known as CCK1R) is found abundantly on pancreatic acinar cells and binds only sulfated CCK-peptides with very high affinity, whereas CCK-BR (type B, brain; also known as CCK2R), the predominant form in the brain and stomach, binds CCK or gastrin and discriminates poorly between sulfated and non-sulfated peptides. CCK is implicated in regulation of digestion, appetite control, and body weight, and is involved in neurogenesis via CCK-AR. There is some evidence to support that CCK and gastrin, via their receptors, are involved in promoting cancer development and progression, acting as growth and invasion factors.


Pssm-ID: 320644 [Multi-domain]  Cd Length: 278  Bit Score: 40.24  E-value: 9.60e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 225 QLLEAKRerKAAQTLAIITGAFVICWLPFFVMALTMSLCK---ECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15978 200 KFLMAKK--RVIRMLIVIVILFFLCWTPIFSANAWRAFDTrsaDRLLSGAPISFIHLLSYTSACVNPIIYCFMNKRFRMG 277

                .
gi 45647651 302 F 302
Cdd:cd15978 278 F 278
7tmA_GPR25 cd15193
G protein-coupled receptor 25, member of the class A family of seven-transmembrane G ...
229-300 1.09e-03

G protein-coupled receptor 25, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR25 is an orphan G-protein coupled receptor that shares strong sequence homology to GPR15 and the angiotensin II receptors. These closely related receptors form a group within the class A G-protein coupled receptors (GPCRs). GPR15 controls homing of T cells, especially FOXP3(+) regulatory T cells, to the large intestine mucosa and thereby mediates local immune homeostasis. Moreover, GRP15-deficient mice were shown to be prone to develop more severe large intestine inflammation. Angiotensin II (Ang II), the main effector in the renin-angiotensin system, plays a crucial role in the regulation of cardiovascular homeostasis through its type 1 (AT1) and type 2 (AT2) receptors.


Pssm-ID: 320321 [Multi-domain]  Cd Length: 279  Bit Score: 40.12  E-value: 1.09e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 229 AKRERKAAQTLAIITgAFVICWLPFFVM----------ALTMSLCKECEIHTAVaSLFLWLGYFNSTLNPVIYTIFNPEF 298
Cdd:cd15193 198 RRRRNSLRIVFAIVT-AFVLSWLPFNTLkavrlllelgGGVLPCHTTVAIRQGL-TITACLAFVNSCVNPLIYSLLDRHF 275

                ..
gi 45647651 299 RR 300
Cdd:cd15193 276 RR 277
7tmA_MWS_opsin cd15080
medium wave-sensitive opsins, member of the class A family of seven-transmembrane G ...
230-299 1.10e-03

medium wave-sensitive opsins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes Medium Wave-Sensitive opsin, which mediates visual transduction in response to light at medium wavelengths (green). Vertebrate cone opsins are expressed in cone photoreceptor cells of the retina and involved in mediating photopic vision, which allows color perception. The cone opsins can be classified into four classes according to their peak absorption wavelengths: SWS1 (ultraviolet sensitive), SWS2 (short wave-sensitive), MWS/LWS (medium/long wave-sensitive), and RH2 (medium wave-sensitive, rhodopsin-like opsins). Members of this group belong to the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops.


Pssm-ID: 381742 [Multi-domain]  Cd Length: 280  Bit Score: 40.20  E-value: 1.10e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15080 208 KAEKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSDFGPIFMTIPAFFAKSSAVYNPVIYILMNKQFR 277
7tmA_Mel1C cd15401
melatonin receptor subtype 1C, member of the class A family of seven-transmembrane G ...
222-302 1.14e-03

melatonin receptor subtype 1C, member of the class A family of seven-transmembrane G protein-coupled receptors; Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring sleep-promoting chemical found in vertebrates, invertebrates, bacteria, fungi, and plants. In mammals, melatonin is secreted by the pineal gland and is involved in regulation of circadian rhythms. Its production peaks during the nighttime, and is suppressed by light. Melatonin is shown to be synthesized in other organs and cells of many vertebrates, including the Harderian gland, leukocytes, skin, and the gastrointestinal (GI) tract, which contains several hundred times more melatonin than the pineal gland and is involved in the regulation of GI motility, inflammation, and sensation. Melatonin exerts its pleiotropic physiological effects through specific membrane receptors, named MT1A, MT1B, and MT1C, which belong to the class A rhodopsin-like G-protein coupled receptor family. MT1A and MT1B subtypes are present in mammals, whereas MT1C subtype has been found in amphibians and birds. The melatonin receptors couple to G proteins of the G(i/o) class, leading to the inhibition of adenylate cyclase.


Pssm-ID: 320523 [Multi-domain]  Cd Length: 279  Bit Score: 39.89  E-value: 1.14e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQLLEAKRERKAAQ-----TLAIITGAFVICWLPFFVMALTMS---LCKECEIHTAVASLFLWLGYFNSTLNPVIYTI 293
Cdd:cd15401 191 KHRVRQDSKQKLKANDirnflTMFVVFVLFAVCWGPLNFIGLAVAinpLKVAPKIPEWLFVLSYFMAYFNSCLNAVIYGV 270

                ....*....
gi 45647651 294 FNPEFRRAF 302
Cdd:cd15401 271 LNQNFRKEY 279
7tmA_GPR39 cd15135
G protein-coupled receptor 39, member of the class A family of seven-transmembrane G ...
228-302 1.22e-03

G protein-coupled receptor 39, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR39 is an orphan G protein-coupled receptor that belongs to the growth hormone secretagogue and neurotensin receptor subfamily. GPR39 is expressed in peripheral tissues such as pancreas, gut, gastrointestinal tract, liver, kidney as well as certain regions of the brain. The divalent metal ion Zn(2+) has been shown to be a ligand capable of activating GPR39. Thus, it has been suggested that GPR39 function as a G(q)-coupled Zn(2+)-sensing receptor which involved in the regulation of endocrine pancreatic function, body weight, gastrointestinal mobility, and cell death.


Pssm-ID: 320263 [Multi-domain]  Cd Length: 320  Bit Score: 40.17  E-value: 1.22e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 228 EAKRERKaaQT---LAIITGAFVICWLPF---FVMAL-------TMSLCKECEIHTAVASLFLwlgYFNSTLNPVIYTIF 294
Cdd:cd15135 238 EGKTARK--QTilfLGLIVGTLAVCWMPNqirRIMAAakpkddwTRSYFRAYIILLPIADTFF---YLSSVLNPLLYNLS 312

                ....*...
gi 45647651 295 NPEFRRAF 302
Cdd:cd15135 313 SQQFRSVF 320
7tmA_UII-R cd14999
urotensin-II receptor, member of the class A family of seven-transmembrane G protein-coupled ...
233-306 1.29e-03

urotensin-II receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; The urotensin-II receptor (UII-R, also known as the hypocretin receptor) is a member of the class A rhodopsin-like G-protein coupled receptors, which binds the peptide hormone urotensin-II. Urotensin II (UII) is a vasoactive somatostatin-like or cortistatin-like peptide hormone. However, despite the apparent structural similarity to these peptide hormones, they are not homologous to UII. Urotensin II was first identified in fish spinal cord, but later found in humans and other mammals. In fish, UII is secreted at the back part of the spinal cord, in a neurosecretory centre called uroneurapophysa, and is involved in the regulation of the renal and cardiovascular systems. In mammals, urotensin II is the most potent mammalian vasoconstrictor identified to date and causes contraction of arterial blood vessels, including the thoracic aorta. The urotensin II receptor is a rhodopsin-like G-protein coupled receptor, which binds urotensin-II. The receptor was previously known as GPR14, or sensory epithelial neuropeptide-like receptor (SENR). The UII receptor is expressed in the CNS (cerebellum and spinal cord), skeletal muscle, pancreas, heart, endothelium and vascular smooth muscle. It is involved in the pathophysiological control of cardiovascular function and may also influence CNS and endocrine functions. Binding of urotensin II to the receptor leads to activation of phospholipase C, through coupling to G(q/11) family proteins. The resulting increase in intracellular calcium may cause the contraction of vascular smooth muscle.


Pssm-ID: 320130 [Multi-domain]  Cd Length: 282  Bit Score: 39.73  E-value: 1.29e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 45647651 233 RKAAQTLAIITGAFVICWLPFFVMALTM----SLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIfnpeFRRAFKRIL 306
Cdd:cd14999 209 QKVLKMIFTIVLVFWACFLPFWIWQLLYlyspSLSLSPRTTTYVNYLLTCLTYSNSCINPFLYTL----LTKNYKEYL 282
7tmA_Encephalopsin cd15078
encephalopsins (opsin-3), member of the class A family of seven-transmembrane G ...
230-300 1.36e-03

encephalopsins (opsin-3), member of the class A family of seven-transmembrane G protein-coupled receptors; Encephalopsin, also called Opsin-3 or Panopsin, is a mammalian extra-retinal opsin that is highly localized in the brain. It is thought to play a role in encephalic photoreception. Encephalopsin belongs to the class A of the G protein-coupled receptors and shows strong homology to the vertebrate visual opsins.


Pssm-ID: 320206 [Multi-domain]  Cd Length: 279  Bit Score: 39.81  E-value: 1.36e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15078 207 KYEKKVAKMCLLMISTFLICWMPYAVVSLLVTSGYSKLVTPTIAIIPSLFAKSSTAYNPVIYIFMIRKFRQ 277
7tmA_SWS1_opsin cd15076
short wave-sensitive 1 opsins, member of the class A family of seven-transmembrane G ...
206-299 1.41e-03

short wave-sensitive 1 opsins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes Short Wave-Sensitive opsin 1 (SWS1), which mediates visual transduction in response to light at short wavelengths (ultraviolet to blue). Vertebrate cone opsins are expressed in cone photoreceptor cells of the retina and involved in mediating photopic vision, which allows color perception. The cone opsins can be classified into four classes according to their peak absorption wavelengths: SWS1 (ultraviolet sensitive), SWS2 (short wave-sensitive), MWS/LWS (medium/long wave-sensitive), and RH2 (medium wave-sensitive, rhodopsin-like opsins). Members of this group belong to the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops.


Pssm-ID: 320204 [Multi-domain]  Cd Length: 280  Bit Score: 39.80  E-value: 1.41e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 206 LGGVLASIANPHQKLAKRRqlleaKRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNST 285
Cdd:cd15076 189 LLGALRAVAAQQQESASTQ-----KAEREVSRMVVVMVGSFCLCYVPYAALAMYMVNNRDHGLDLRLVTIPAFFSKSSCV 263
                        90
                ....*....|....
gi 45647651 286 LNPVIYTIFNPEFR 299
Cdd:cd15076 264 YNPIIYCFMNKQFR 277
7tmA_NTSR cd15130
neurotensin receptors, member of the class A family of seven-transmembrane G protein-coupled ...
233-302 1.44e-03

neurotensin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Neurotensin (NTS) is a 13 amino-acid neuropeptide that functions as both a neurotransmitter and a hormone in the nervous system and peripheral tissues, respectively. NTS exerts various biological activities through activation of the G protein-coupled neurotensin receptors, NTSR1 and NTSR2. In the brain, NTS is involved in the modulation of dopamine neurotransmission, opioid-independent analgesia, hypothermia, and the inhibition of food intake, while in the periphery NTS promotes the growth of various normal and cancer cells and acts as a paracrine and endocrine modulator of the digestive tract. The third neurotensin receptor, NTSR3 or also called sortilin, is not a G protein-coupled receptor.


Pssm-ID: 320258 [Multi-domain]  Cd Length: 281  Bit Score: 39.54  E-value: 1.44e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 233 RKAAQTLAIITGAFVICWLPFFVMALTMslckeCEIHTAVASLFLW------------LGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15130 205 RRGVLVLRAVVIAFVVCWLPYHVRRLMF-----CYISDEQWTTFLFdfyhyfymltnaLFYVSSAINPILYNLVSANFRQ 279

                ..
gi 45647651 301 AF 302
Cdd:cd15130 280 VF 281
7tmA_NPBWR cd15087
neuropeptide B/W receptors, member of the class A family of seven-transmembrane G ...
230-302 1.69e-03

neuropeptide B/W receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Neuropeptide B/W receptor 1 and 2 are members of the class A G-protein coupled receptors that bind the neuropeptides B and W, respectively. NPBWR1 (previously known as GPR7) is expressed predominantly in cerebellum and frontal cortex, while NPBWR2 (previously known as GPR8) is located mostly in the frontal cortex and is present in human, but not in rat and mice. These receptors are suggested to be involved in the regulation of food intake, neuroendocrine function, and modulation of inflammatory pain, among many others. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320215 [Multi-domain]  Cd Length: 282  Bit Score: 39.34  E-value: 1.69e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFF---VMALTMSLcKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15087 208 KAKKKVTLMVLVVLAVCLFCWTPFHlstVVALTTDL-PQTPLVIGISYFITSLSYANSCLNPFLYAFLDDSFRKSF 282
7tmA_Cannabinoid_R cd15099
cannabinoid receptors, member of the class A family of seven-transmembrane G protein-coupled ...
214-302 1.91e-03

cannabinoid receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Cannabinoid receptors belong to the class A G-protein coupled receptor superfamily. Two types of cannabinoid receptors, CB1 and CB2, have been identified so far. They are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system.


Pssm-ID: 320227 [Multi-domain]  Cd Length: 281  Bit Score: 39.44  E-value: 1.91e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 214 ANPHQKLAKRRQLLEAKRER---KAAQTLAIITGAFVICWLP---FFVMALTMSLCKECEIHTAVASLflwLGYFNSTLN 287
Cdd:cd15099 190 ANMGGPKLGRQQVKGQARMRmdiRLAKTLSLILLVLAICWLPvlaFMLVDVRVTLTNKQKRMFAFCSM---LCLVNSCVN 266
                        90
                ....*....|....*
gi 45647651 288 PVIYTIFNPEFRRAF 302
Cdd:cd15099 267 PIIYALRSRELRGAM 281
7tmA_GPR19 cd15008
G protein-coupled receptor 19, member of the class A family of seven-transmembrane G ...
234-300 1.92e-03

G protein-coupled receptor 19, member of the class A family of seven-transmembrane G protein-coupled receptors; G-protein coupled receptor 19 is an orphan receptor that is expressed predominantly in neuronal cells during mouse embryogenesis. Its mRNA is found frequently over-expressed in patients with small cell lung cancer. GPR19 shares a significant amino acid sequence identity with the D2 dopamine and neuropeptide Y families of receptors. Human GPR19 gene, intronless in the coding region, also has a distribution in brain overlapping that of the D2 dopamine receptor gene, and is located on chromosome 12. GPR19 is a member of the class A family of GPCRs, which represents a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320137 [Multi-domain]  Cd Length: 275  Bit Score: 39.43  E-value: 1.92e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 234 KAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRR 300
Cdd:cd15008 207 KTIKMFLMLNSMFLLSWLPFYVVQLWHPRESDYRQSSLVFLAVTWISFSSSASKPTLYSVYNANFRR 273
7tmA_GRPR cd15124
gastrin-releasing peptide receptor, member of the class A family of seven-transmembrane G ...
223-302 2.23e-03

gastrin-releasing peptide receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; The gastrin-releasing peptide receptor (GRPR) is a G-protein coupled receptor whose endogenous ligand is gastrin releasing peptide. GRP shares high sequence homology with the neuropeptide neuromedin B in the C-terminal region. This receptor is high glycosylated and couples to a pertussis-toxin-insensitive G protein of the family of Gq/11, which leads to the activation of phospholipase C. Gastrin-releasing peptide (GRP) is a potent mitogen for neoplastic tissues and involved in regulating multiple functions of the gastrointestinal and central nervous systems. These include the release of gastrointestinal hormones, the contraction of smooth muscle cells, and the proliferation of epithelial cells. GRPR belongs to the bombesin subfamily of G-protein coupled receptors, whose members also include neuromedin B receptor (NMBR) and bombesin receptor subtype 3 (BRS-3). Bombesin is a tetradecapeptide, originally isolated from frog skin.


Pssm-ID: 320252 [Multi-domain]  Cd Length: 293  Bit Score: 39.11  E-value: 2.23e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 223 RRQLLEAKRerkAAQTLAIITGAFVICWLPFFVMALTMSLcKECEIHTAVASLFL-----WLGYFNSTLNPVIYTIFNPE 297
Cdd:cd15124 213 RRQIESRKR---LAKTVLVFVGLFAFCWLPNHIIYLYRSY-HYSEVDTSMLHFVSsicarILAFTNSCVNPFALYLLSKS 288

                ....*
gi 45647651 298 FRRAF 302
Cdd:cd15124 289 FRKQF 293
7tmA_GPR1 cd15119
G protein-coupled receptor 1 for chemerin, member of the class A family of seven-transmembrane ...
222-299 2.25e-03

G protein-coupled receptor 1 for chemerin, member of the class A family of seven-transmembrane G protein-coupled receptors; G-protein coupled receptor 1 (GPR1) belongs to the class A of the seven transmembrane domain receptors. This is an orphan receptor that can be activated by the leukocyte chemoattractant chemerin, thereby suggesting that some of the anti-inflammatory actions of chemerin may be mediated through GPR1. GPR1 is most closely related to another chemerin receptor CMKLR1. In an in-vitro study, GPR1 has been shown to act as a co-receptor to allow replication of HIV viruses.


Pssm-ID: 320247 [Multi-domain]  Cd Length: 278  Bit Score: 38.96  E-value: 2.25e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 222 KRRQLLeakRERKAAQTLAIITGAFVICWLPFFVMALTmslckECEIHTAvASLFLW----------LGYFNSTLNPVIY 291
Cdd:cd15119 197 KRRTLL---ISSKFFWTISAVIVAFFVCWTPYHIFSIL-----ELSIHHS-SYLHNVlragiplatsLAFINSCLNPILY 267

                ....*...
gi 45647651 292 TIFNPEFR 299
Cdd:cd15119 268 VLIGKKFK 275
7tmA_prokineticin-R cd15204
prokineticin receptors, member of the class A family of seven-transmembrane G protein-coupled ...
217-302 2.69e-03

prokineticin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Prokineticins 1 (PROK1) and 2 (PROK2), also known as endocrine gland vascular endothelial factor and Bombina varigata 8, respectively, are multifunctional chemokine-like peptides that are highly conserved across species. Prokineticins can bind with similar affinities to two closely homologous 7-transmembrane G protein coupled receptors, PROKR1 and PROKR2, which are phylogenetically related to the tachykinin receptors. Prokineticins and their GPCRs are widely distributed in human tissues and are involved in numerous physiological roles, including gastrointestinal motility, generation of circadian rhythms, neuron migration and survival, pain sensation, angiogenesis, inflammation, and reproduction. Moreover, different point mutations in genes encoding PROK2 or its receptor (PROKR2) can lead to Kallmann syndrome, a disease characterized by delayed or absent puberty and impaired olfactory function.


Pssm-ID: 320332 [Multi-domain]  Cd Length: 288  Bit Score: 38.80  E-value: 2.69e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 217 HQKLAKRRQLleaKRERKAAQTLAIITGAFVICWLPFFVMALT-----MSLCKE---CEIHTAVASlflwLGYFNSTLNP 288
Cdd:cd15204 202 QQTEQIRRRL---RRRRRKVRLLVVILTAFVLCWAPYYGYAIVrdffpTLLSKEklnTTIFYIVEA----LAMSNSMINT 274
                        90
                ....*....|....
gi 45647651 289 VIYTIFNPEFRRAF 302
Cdd:cd15204 275 VVYVAFNNNIRKYL 288
7tmA_Proton-sensing_R cd15160
proton-sensing G protein-coupled receptors, member of the class A family of ...
227-301 3.19e-03

proton-sensing G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Proton/pH-sensing G-protein coupled receptors sense pH of 7.6 to 6.0. They mediate a variety of biological activities in neutral and mildly acidic pH conditions, whereas the acid-sensing ionotropic ion channels typically sense strong acidic pH. The proton/pH-sensing receptor family includes the G2 accumulation receptor (G2A, also known as GPR132), the T cell death associated gene-8 (TDAG8, GPR65) receptor, ovarian cancer G-protein receptor 1 (OGR-1, GPR68), and G-protein-coupled receptor 4 (GPR4).


Pssm-ID: 320288 [Multi-domain]  Cd Length: 280  Bit Score: 38.52  E-value: 3.19e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 227 LEAKRERKAAQTLAIITGAFVICWLPFFVM-----ALTMSLCKECEIHTAVAS---LFLWLGYFNSTLNPVIYTIFNPEF 298
Cdd:cd15160 197 LEREEKRKIIGLLLSIVVIFLLCFLPYHVVllvrsVIELVQNGLCGFEKRVFTayqISLCLTSLNCVADPILYIFVTEDV 276

                ...
gi 45647651 299 RRA 301
Cdd:cd15160 277 RQD 279
7tmA_LWS_opsin cd15081
long wave-sensitive opsins, member of the class A family of seven-transmembrane G ...
230-299 3.78e-03

long wave-sensitive opsins, member of the class A family of seven-transmembrane G protein-coupled receptors; Long Wave-Sensitive opsin is also called red-sensitive opsin or red cone photoreceptor pigment, which mediates visual transduction in response to light at long wavelengths. Vertebrate cone opsins are expressed in cone photoreceptor cells of the retina and involved in mediating photopic vision, which allows color perception. The cone opsins can be classified into four classes according to their peak absorption wavelengths: SWS1 (ultraviolet sensitive), SWS2 (short wave-sensitive), MWS/LWS (medium/long wave-sensitive), and RH2 (medium wave-sensitive, rhodopsin-like opsins). Members of this group belong to the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops.


Pssm-ID: 320209 [Multi-domain]  Cd Length: 292  Bit Score: 38.35  E-value: 3.78e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15081 220 KAEKEVSRMVVVMIFAYCFCWGPYTFFACFAAANPGYAFHPLAAALPAYFAKSATIYNPIIYVFMNRQFR 289
7tmA_CysLTR2 cd15157
cysteinyl leukotriene receptor 2, member of the class A family of seven-transmembrane G ...
233-291 3.88e-03

cysteinyl leukotriene receptor 2, member of the class A family of seven-transmembrane G protein-coupled receptors; Cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are the most potent inflammatory lipid mediators that play an important role in human asthma. They are synthesized in the leucocytes (cells of immune system) from arachidonic acid by the actions of 5-lipoxygenase and induce bronchial constriction through G protein-coupled receptors, CysLTR1 and CysLTR2. Activation of CysLTR1 by LTD4 induces airway smooth muscle contraction and proliferation, eosinophil migration, and damage to the lung tissue. They belong to the class A GPCR superfamily, which all have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320285 [Multi-domain]  Cd Length: 278  Bit Score: 38.54  E-value: 3.88e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 233 RKAAQTLAIITGAFVICWLPFFV------MALTMSLCKeCEIHTAVAsLFLWLGYFNSTLNPVIY 291
Cdd:cd15157 205 KKALLTIIITLILFLLCFLPYHIlrtvhlMQWSEGQCN-LRLHKAVV-ITLCLAAANSCLDPLLY 267
7tmA_P2Y10 cd15153
P2Y purinoceptor 10, member of the class A family of seven-transmembrane G protein-coupled ...
224-299 3.96e-03

P2Y purinoceptor 10, member of the class A family of seven-transmembrane G protein-coupled receptors; P2Y10 receptor is a G-protein coupled receptor that is activated by both sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA). Phylogenetic analysis of the class A GPCRs shows that P2Y10 is grouped into the cluster comprising nucleotide and lipid receptors. Although the mouse P2Y10 was found to be expressed in brain, lung, reproductive organs, and skeletal muscle, the physiological function of this receptor is not yet known. S1P and LPA are bioactive lipid molecules that induce a variety of cellular responses through G proteins: adhesion, invasion, cell migration and proliferation, among many others.


Pssm-ID: 320281 [Multi-domain]  Cd Length: 283  Bit Score: 38.24  E-value: 3.96e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 224 RQLLEAKRERKAAQTLAIITGAFVICWLP-----FFVMALTMSLCKECEIHTAVASLF---LWLGYFNSTLNPVIYTIFN 295
Cdd:cd15153 197 KQQQSTSEKQKALRMVRMCAAVFFICFAPyhinfLFYLMVSESIITNCEVSQVILQFHpisLCLASLNCCLDPILYYFMT 276

                ....
gi 45647651 296 PEFR 299
Cdd:cd15153 277 SEFQ 280
7tmA_PD2R2_CRTH2 cd15118
prostaglandin D2 receptor, member of the class A family of seven-transmembrane G ...
209-298 4.98e-03

prostaglandin D2 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Prostaglandin D2 receptor, also known as CRTH2, is a chemoattractant G-protein coupled receptor expressed on T helper type 2 cells that binds prostaglandin D2 (PGD2). PGD2 functions as a mast cell-derived mediator to trigger asthmatic responses and also causes vasodilation. PGD2 exerts its inflammatory effects by binding to two G-protein coupled receptors, the D-type prostanoid receptor (DP) and PD2R2 (CRTH2). PD2R2 couples to the G protein G(i/o) type which leads to a reduction in intracellular cAMP levels and an increase in intracellular calcium. PD2R2 is involved in mediating chemotaxis of Th2 cells, eosinophils, and basophils generated during allergic inflammatory processes. CRTH2 (PD2R2), but not DP receptor, undergoes agonist-induced internalization which is one of key processes that regulates the signaling of the GPCR.


Pssm-ID: 320246 [Multi-domain]  Cd Length: 284  Bit Score: 37.86  E-value: 4.98e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 209 VLASIANPHQKLAKRRQlleaKRERKAAQTLAIITGAFVICWLPFFVMALTmslckECEIHTAVASL-FLW--------L 279
Cdd:cd15118 191 IAVSYAVVSLIIRHRCR----RRPGRFVRLVVSVVVSFALCWAPYHIFSII-----EVMAHNQHSLRpLVIqglpfattL 261
                        90
                ....*....|....*....
gi 45647651 280 GYFNSTLNPVIYTIFNPEF 298
Cdd:cd15118 262 AFLNSVLNPVLYVFSCPDF 280
7tmA_Trissin_R cd15012
trissin receptor and related proteins, member of the class A family of seven-transmembrane G ...
230-301 5.39e-03

trissin receptor and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup represents the Drosophila melanogaster trissin receptor and closely related invertebrate proteins which are a member of the class A family of seven-transmembrane G-protein coupled receptors. The cysteine-rich trissin has been shown to be an endogenous ligand for the orphan CG34381 in Drosophila melanogaster. Trissin is a peptide composed of 28 amino acids with three intrachain disulfide bonds with no significant structural similarities to known endogenous peptides. Cysteine-rich peptides are known to have antimicrobial or toxicant activities, although frequently their mechanism of action is poorly understood. Since the expression of trissin and its receptor is reported to predominantly localize to the brain and thoracicoabdominal ganglion, trissin is predicted to behave as a neuropeptide. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320140 [Multi-domain]  Cd Length: 277  Bit Score: 37.81  E-value: 5.39e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMAL-----TMSLCKEC--EIHTAVASLFLwlgYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15012 201 EARRKVVRLLVAVVVSFALCNLPYHARKMwqywsEPYRCDSNwnALLTPLTFLVL---YFNSAVNPLLYAFLSKRFRQS 276
7tmA_GPER1 cd14989
G protein-coupled estrogen receptor 1, member of the class A family of seven-transmembrane G ...
214-299 5.43e-03

G protein-coupled estrogen receptor 1, member of the class A family of seven-transmembrane G protein-coupled receptors; G-protein coupled estrogen receptor 1 (GPER1), also known as the G-protein coupled receptor 30 (GPR30), is a high affinity receptor for estrogen. This receptor is a member of the class A of seven-transmembrane GPCRs. Estrogen binding results in intracellular calcium mobilization and synthesis of phosphatidylinositol (3,4,5)-trisphosphate in the nucleus. GPR30 plays an important role in development of tamoxifen resistance in breast cancer cells. The distribution of GPR30 is well established in the rodent, with high expression observed in the hypothalamus, pituitary gland, adrenal medulla, kidney medulla and developing follicles of the ovary. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes.


Pssm-ID: 320120 [Multi-domain]  Cd Length: 276  Bit Score: 37.88  E-value: 5.43e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 214 ANPHQKLAKRRQlleakrerKAAQTLAIITGAFVICWLP---FFVMALTMSLCKECEI--------HTAVASLFLWLGYF 282
Cdd:cd14989 185 AQKHRRLRPRRQ--------KALRMILVVVLVFFICWLPenvFISIQLLQGTQEPSESydesfrhnHPLTGHIVNLAAFS 256
                        90
                ....*....|....*..
gi 45647651 283 NSTLNPVIYTIFNPEFR 299
Cdd:cd14989 257 NSCLNPLIYSFLGETFR 273
7tmA_NTSR2 cd15356
neurotensin receptor subtype 2, member of the class A family of seven-transmembrane G ...
233-302 5.83e-03

neurotensin receptor subtype 2, member of the class A family of seven-transmembrane G protein-coupled receptors; Neurotensin (NTS) is a 13 amino-acid neuropeptide that functions as both a neurotransmitter and a hormone in the nervous system and peripheral tissues, respectively. NTS exerts various biological activities through activation of the G protein-coupled neurotensin receptors, NTSR1 and NTSR2. In the brain, NTS is involved in the modulation of dopamine neurotransmission, opioid-independent analgesia, hypothermia, and the inhibition of food intake, while in the periphery NTS promotes the growth of various normal and cancer cells and acts as a paracrine and endocrine modulator of the digestive tract. The third neurotensin receptor, NTSR3 or also called sortilin, is not a G protein-coupled receptor.


Pssm-ID: 320478 [Multi-domain]  Cd Length: 285  Bit Score: 37.92  E-value: 5.83e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 233 RKAAQTLAIITGAFVICWLPFFVMALTMslckeCEI--HTAVASLFLWLGYF----------NSTLNPVIYTIFNPEFRR 300
Cdd:cd15356 209 QHSVQVLRAIVIAYVICWLPYHARRLMF-----CYVpdDAWTDSLYNFYHYFymltntlfyvSSAVNPLLYNVVSSSFRK 283

                ..
gi 45647651 301 AF 302
Cdd:cd15356 284 LF 285
7tmA_RXFP1_LGR7 cd15965
relaxin receptor 1 (or LGR7), member of the class A family of seven-transmembrane G ...
230-306 6.00e-03

relaxin receptor 1 (or LGR7), member of the class A family of seven-transmembrane G protein-coupled receptors; Relaxin is a member of the insulin superfamily that has diverse actions in both reproductive and non-reproductive tissues. The relaxin-like peptide family includes relaxin-1, relaxin-2, and the insulin-like (INSL) peptides such as INSL3, INSL4, INSL5 and INSL6. The relaxin family peptides share high structural but low sequence similarity, and exert their physiological functions by activating a group of four G protein-coupled receptors, RXFP1-4. Relaxin is the endogenous ligand for RXFP1, which has a large extracellular N-terminal domain containing 10 leucine-rich repeats and a unique low-density lipoprotein type A (LDLa) module which is necessary for receptor activation. Upon receptor binding, relaxin activates a variety of signaling pathways to produce second messengers such as cAMP and nitric oxide. RXFP1 is expressed in various tissues including uterus, ovary, placenta, cerebral cortex, heart, lung and kidney, among others.


Pssm-ID: 320631 [Multi-domain]  Cd Length: 287  Bit Score: 37.93  E-value: 6.00e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMALtMSLCkECEIHTAVASlflWLGYF----NSTLNPVIYTIFNpefrRAFKRI 305
Cdd:cd15965 216 KKEMTLAKRFFFIVFTDALCWIPIFILKL-LSLL-QVEIPGTISS---WVVIFilpiNSALNPILYTLTT----RPFKEM 286

                .
gi 45647651 306 L 306
Cdd:cd15965 287 I 287
7tmA_Bombesin_R-like cd15927
bombesin receptor subfamily, member of the class A family of seven-transmembrane G ...
215-302 7.04e-03

bombesin receptor subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors; This bombesin subfamily of G-protein coupled receptors consists of neuromedin B receptor (NMBR), gastrin-releasing peptide receptor (GRPR), and bombesin receptor subtype 3 (BRS-3). Bombesin is a tetradecapeptide, originally isolated from frog skin. Mammalian bombesin-related peptides are widely distributed in the gastrointestinal and central nervous systems. The bombesin family receptors couple mainly to the G proteins of G(q/11) family. NMBR functions as the receptor for the neuropeptide neuromedin B, a potent mitogen and growth factor for normal and cancerous lung and for gastrointestinal epithelial tissues. Gastrin-releasing peptide is an endogenous ligand for GRPR and shares high sequence homology with NMB in the C-terminal region. Both NMB and GRP possess bombesin-like biochemical properties. BRS-3 is classified as an orphan receptor and suggested to play a role in sperm cell division and maturation. BRS-3 interacts with known naturally-occurring bombesin-related peptides with low affinity; however, no endogenous high-affinity ligand to the receptor has been identified. The bombesin receptor family belongs to the seven transmembrane rhodopsin-like G-protein coupled receptors (class A GPCRs), which perceive extracellular signals and transduce them to guanine nucleotide-binding (G) proteins.


Pssm-ID: 320593 [Multi-domain]  Cd Length: 294  Bit Score: 37.63  E-value: 7.04e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 215 NPHQKLAKRRQLlEAKRerKAAQTLAIITGAFVICWLPFFVMALTMSlckeCEIHTAVASLFLW---------LGYFNST 285
Cdd:cd15927 205 GSGQNQAAQRQI-EARK--KVAKTVLAFVVLFAVCWLPRHVFMLWFH----FAPNGLVDYNAFWhvlkivgfcLSFINSC 277
                        90
                ....*....|....*..
gi 45647651 286 LNPVIYTIFNPEFRRAF 302
Cdd:cd15927 278 VNPVALYLLSGSFRRHF 294
7tmA_P2Y-like cd15922
P2Y purinoceptor-like proteins, member of the class A family of seven-transmembrane G ...
211-302 7.07e-03

P2Y purinoceptor-like proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; P2Y-like proteins are an uncharacterized group that is phylogenetically related to a family of purinergic G protein-coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5 and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12 and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14).


Pssm-ID: 320588 [Multi-domain]  Cd Length: 284  Bit Score: 37.38  E-value: 7.07e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 45647651 211 ASIANPHQKLAKRRqllEAKRerKAAQTLAIITGAFVICWLPFFV---MALTMSLC--KECEI--HTAVASLFLW-LGYF 282
Cdd:cd15922 190 ASIAKMNSNNARGR---AMKA--KSLQMIGISLVIFIICFVPLHVtrtVGVVVKLFypESCTLlhKVEVAYYISWvLTGV 264
                        90       100
                ....*....|....*....|
gi 45647651 283 NSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15922 265 NCCLDPLLYCFASEKFRKSF 284
7tmA_NPY2R cd15399
neuropeptide Y receptor type 2, member of the class A family of seven-transmembrane G ...
231-302 7.94e-03

neuropeptide Y receptor type 2, member of the class A family of seven-transmembrane G protein-coupled receptors; NPY is a 36-amino acid peptide neurotransmitter with a C-terminal tyrosine amide residue that is widely distributed in the brain and the autonomic nervous system of many mammalian species. NPY exerts its functions through five, G-protein coupled receptor subtypes including NPY1R, NPY2R, NPY4R, NPY5R, and NPY6R; however, NPY6R is not functional in humans. NYP receptors are also activated by its two other family members, peptide YY (PYY) and pancreatic polypeptide (PP). They typically couple to G(i) or G(o) proteins, which leads to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels, and are involved in diverse physiological roles including appetite regulation, circadian rhythm, and anxiety. When NPY signals through NPY2R in concert with NPY5R, it induces angiogenesis and consequently plays an important role in revascularization and wound healing. On the other hand, when NPY acts through NPY1R and NPYR5, it acts as a vascular mitogen, leading to restenosis and atherosclerosis.


Pssm-ID: 320521 [Multi-domain]  Cd Length: 285  Bit Score: 37.49  E-value: 7.94e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 45647651 231 RERKAAQTLAIITGAFVICWLPFFVMALTMSLCK---ECEIHTAVASLFLWLGYFNSTLNPVIYTIFNPEFRRAF 302
Cdd:cd15399 211 RRRKTTKMLVCVVVVFAVSWLPFHAFQLASDIDSkvlDLKEYKLIYTIFHVIAMCSTFANPLLYGWMNNNYRTAF 285
7tmA_CB2 cd15341
cannabinoid receptor subtype 2, member of the class A family of seven-transmembrane G ...
236-301 8.07e-03

cannabinoid receptor subtype 2, member of the class A family of seven-transmembrane G protein-coupled receptors; Cannabinoid receptors belong to the class A G-protein coupled receptor superfamily. Two types of cannabinoid receptors, CB1 and CB2, have been identified so far. They are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system.


Pssm-ID: 320463 [Multi-domain]  Cd Length: 279  Bit Score: 37.51  E-value: 8.07e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 45647651 236 AQTLAIITGAFVICWLPffVMALTM-SLCKECEIHTAVASLFL-WLGYFNSTLNPVIYTIFNPEFRRA 301
Cdd:cd15341 213 AKTLGLVLAVLLICWSP--VLALMMhSLFTSLSDHIKKAFAFCsTLCLVNSMVNPIIYALRSRELRSS 278
7tmA_GPR150 cd15198
G protein-coupled receptor 150, member of the class A family of seven-transmembrane G ...
238-295 8.22e-03

G protein-coupled receptor 150, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR150 is an orphan receptor closely related to the oxytocin and vasopressin receptors. Its endogenous ligand is not known. These receptors share a significant amino acid sequence similarity, suggesting that they have a common evolutionary origin.


Pssm-ID: 320326 [Multi-domain]  Cd Length: 299  Bit Score: 37.48  E-value: 8.22e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 45647651 238 TLAIITgAFVICWLPFFVMALTMSLCKECEIHTAVASLFLWLGYFNSTLNPVIYTIFN 295
Cdd:cd15198 236 TLVIAL-LFVGCSLPYFIAELAAAFGSGDWEPEKVAAALGVMAVANSATNPFVFLFFN 292
7tmA_PrRP_R cd15394
prolactin-releasing peptide receptor, member of the class A family of seven-transmembrane G ...
230-299 8.49e-03

prolactin-releasing peptide receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Prolactin-releasing peptide (PrRP) receptor (previously known as GPR10) is expressed in the central nervous system with the highest levels located in the anterior pituitary and is activated by its endogenous ligand PrRP, a neuropeptide possessing a C-terminal Arg-Phe-amide motif. There are two active isoforms of PrRP in mammals: one consists of 20 amino acids (PrRP-20) and the other consists of 31 amino acids (PrRP-31), where PrRP-20 is a C-terminal fragment of PrRP-31. Binding of PrRP to the receptor coupled to G(i/o) proteins activates the extracellular signal-related kinase (ERK) and it can also couple to G(q) protein leading to an increase in intracellular calcium and activation of c-Jun N-terminal protein kinase (JNK). The PrRP receptor shares significant sequence homology with the neuropeptide Y (NPY) receptor, and micromolar levels of NPY can bind and completely inhibit the PrRP-evoked intracellular calcium response in PrRP receptor-expressing cells, suggesting that the PrRP receptor shares a common ancestor with the NPY receptors. PrRP has been shown to reduce food intake and body weight and modify body temperature when administered in rats. It also has been shown to decrease circulating growth hormone levels by activating somatostatin-secreting neurons in the hypothalamic periventricular nucleus.


Pssm-ID: 320516 [Multi-domain]  Cd Length: 286  Bit Score: 37.41  E-value: 8.49e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 230 KRERKAAQTLAIITGAFVICWLPFFVMaltmSLCKECEIHTA-------VASLFLWLGYFNSTLNPVIYTIFNPEFR 299
Cdd:cd15394 211 ARRRKTFRLLVVVVVAFAICWLPLHIF----NVIRDIDIDLIdkqyfnlIQLLCHWLAMSSACYNPFLYAWLHDSFR 283
7tmA_P2Y3-like cd16001
P2Y purinoceptor 3-like proteins, member of the class A family of seven-transmembrane G ...
233-291 9.96e-03

P2Y purinoceptor 3-like proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; P2Y3-like proteins are an uncharacterized group that belongs to the G(i) class of a family of purinergic G-protein coupled receptors. The P2Y receptor family is composed of eight subtypes, which are activated by naturally occurring extracellular nucleotides such as ATP, ADP, UTP, UDP, and UDP-glucose. These eight receptors are ubiquitous in human tissues and can be further classified into two subfamilies based on sequence homology and second messenger coupling: a subfamily of five P2Y1-like receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11Rs) that are coupled to G(q) protein to activate phospholipase C (PLC) and a second subfamily of three P2Y12-like receptors (P2Y12, P2YR13, and P2Y14Rs) that are coupled to G(i) protein to inhibit adenylate cyclase. Several cloned subtypes, such as P2Y3, P2Y5, and P2Y7-10, are not functional mammalian nucleotide receptors. The native agonists for P2Y receptors are: ATP (P2Y2, P2Y12), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2, P2Y4), UDP (P2Y6, P2Y14), and UDP-glucose (P2Y14).


Pssm-ID: 320667 [Multi-domain]  Cd Length: 284  Bit Score: 37.05  E-value: 9.96e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 45647651 233 RKAAQTLAIITGAFVICWLPFFV-----MALTMSLCKECEIHTAV-ASLFLW--LGYFNSTLNPVIY 291
Cdd:cd16001 207 AKSIRTILLVCGLFALCFVPFHItrtiyLFVRVYLVQDCPLLQFVsLAYKIWrpLVSFNSCINPLLY 273
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH