Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 16

1.

Pyruvate induces mitochondrial biogenesis by a PGC-1alpha independent mechanism

(Submitter supplied) The present study examines the impact of altering energy provision on mitochondrial biogenesis in muscle cells. C2C12 myoblasts were chronically treated with supraphysiological levels of sodium pyruvate for 72 hr. Treated cells exhibited increased mitochondrial protein expression, basal respiratory rate and maximal oxidative capacity. The increase in mitochondrial biogenesis was independent of increases in PGC-1alpha and PGC-1alpha mRNA expression. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2265
Platform:
GPL1261
6 Samples
Download data
Series
Accession:
GSE5497
ID:
200005497
2.
Full record GDS2265

Pyruvate effect on muscle cells

Analysis of C2C12 myoblasts treated with supraphysiological levels of sodium pyruvate for 72 hours. Pyruvate increases mitochondrial biogenesis in muscle myoblasts. Results provide insight into the impact of altering energy provision on mitochondrial biogenesis in muscle cells.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 agent sets
Platform:
GPL1261
Series:
GSE5497
6 Samples
Download data
DataSet
Accession:
GDS2265
ID:
2265
3.

Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation

(Submitter supplied) Mitochondria play an essential role in the ability of brown fat to generate heat, and the PGC-1 coactivators control several aspects of mitochondrial biogenesis. To investigate their specific roles in brown fat cells, we generated immortal preadipocyte lines from the brown adipose tissue of mice lacking PGC-1α. We could then efficiently knockdown PGC-1β expression by shRNA expression. Loss of PGC-1α did not alter brown fat differentiation but severely reduced the induction of thermogenic genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2123
Platform:
GPL1261
6 Samples
Download data
Series
Accession:
GSE5042
ID:
200005042
4.

Expression of the brown fat thermogenic gene program requires PGC-1alpha

(Submitter supplied) To investigate the specific role of PGC-1 coactivators in brown fat cells, we generated immortal preadipocyte lines from the brown adipose tissue of mice lacking PGC-1alpha. We could then efficiently knockdown PGC-1beta expression by shRNA expression. Loss of PGC-1alpha did not alter brown fat differentiation but severly reduced the induction of thermogenic genes. In order to assess the specific requirement for PGC-1α in the global transcriptional response to cAMP, we used Affymetrix arrays to compare the sets of genes induced in response to a 4 hr dbcAMP treatment in differentiated wt and KO cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2149
Platform:
GPL1261
8 Samples
Download data
Series
Accession:
GSE5041
ID:
200005041
5.
Full record GDS2149

PGC-1alpha null brown adipocyte response to cAMP

Analysis of PGC-1alpha null brown adipocytes treated with cAMP for 4 hours. PGC-1alpha is required for the thermogenic function of brown fat cells, and cAMP plays a role in thermogenesis. Results provide insight into the role of PGC-1alpha in the global transcriptional response to cAMP.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 agent, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE5041
8 Samples
Download data
DataSet
Accession:
GDS2149
ID:
2149
6.
Full record GDS2123

Brown fat cell response to PGC-1alpha and PGC-1beta deficiency

Analysis of brown fat cells lacking PGC-1alpha or both PGC-1alpha and PGC-1beta. PGC-1alpha is required for the thermogenic function of brown fat cells, and PGC-1beta is the closest homolog of PGC-1alpha. Results provide insight into the specific roles of PGC-1alpha and PGC-1beta in brown fat cells.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 3 agent, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE5042
6 Samples
Download data
DataSet
Accession:
GDS2123
ID:
2123
7.

The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defense in skeletal muscles

(Submitter supplied) Transcriptional microarray analysis was conducted on gastrocnemius muscle of control and PGC-1β(i)skm-/- mice one week after the last tamoxifen administration using the Affymetrix Mouse Gene 1.0 ST.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
2 Samples
Download data: CEL, CHP
Series
Accession:
GSE73572
ID:
200073572
8.

Skeletal muscle PGC-1a mediates mitochondrial, but not metabolic, changes during calorie restriction.

(Submitter supplied) Calorie restriction (CR) is a dietary intervention that extends lifespan and healthspan in a variety of organisms. CR improves mitochondrial energy production, fuel oxidation and reactive oxygen species scavenging in skeletal muscle and other tissues, and these processes are thought to be critical to the benefits of CR. PGC-1a is a transcriptional coactivator that regulates mitochondrial function and is induced by CR. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
26 Samples
Download data: CEL
Series
Accession:
GSE34773
ID:
200034773
9.

Progressive loss of PGC-1alpha expression in aging muscle potentiates glucose intolerance and systemic inflammation

(Submitter supplied) Decreased mitochondrial mass and function in muscle of diabetic patients is associated with low PGC-1alpha, a transcriptional coactivator of the mitochondrial gene program. To investigate whether reduced PGC-1alpha and oxidative capacity in muscle directly contributes to age-related glucose intolerance, we compared the genetic signatures and metabolic profiles of aging mice lacking muscle PGC-1alpha. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS4904
Platform:
GPL1261
12 Samples
Download data: CEL
Series
Accession:
GSE52550
ID:
200052550
10.
Full record GDS4904

Peroxisome proliferator-γ coactivator-1α deficiency effect on aged gastrocnemius muscle

Analysis of muscle from aged animals with muscle-specific Pgc-1α depletion. PGC-1alpha is a transcriptional coactivator of the mitochondrial gene program. Results provide insight into the role of Pgc-1α in the glucose intolerance and chronic systemic inflammation associated with aging.
Organism:
Mus musculus
Type:
Expression profiling by array, transformed count, 2 age, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE52550
12 Samples
Download data: CEL
11.

Gene Expression Profiling of PGC-1a KO mouse striata

(Submitter supplied) Huntington’s Disease (HD) is an inherited neurodegenerative disease caused by a glutamine repeat expansion in huntingtin protein. Transcriptional deregulation and altered energy metabolism have been implicated in HD pathogenesis. We report here that mutant huntingtin causes disruption of mitochondrial function by inhibiting expression of PGC-1a, a transcriptional coactivator that regulates several metabolic processes including mitochondrial biogenesis and respiration. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2391
Platform:
GPL1261
6 Samples
Download data
Series
Accession:
GSE5786
ID:
200005786
12.
Full record GDS2391

PGC-1alpha transcriptional coactivator null mutation effect on the brain striatum

Analysis of brain striatum of PGC-1alpha transcriptional coactivator null mutants. PGC-1alpha regulates several metabolic processes. Altered energy metabolism is implicated in Huntington's disease (HD). Results provide insight into the role of PGC-1alpha in HD pathogenesis.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE5786
6 Samples
Download data
DataSet
Accession:
GDS2391
ID:
2391
13.

mTOR pathway controls mitochondrial gene expression and respiration through the YY1/PGC-1alpha transcriptional complex

(Submitter supplied) Mitochondrial oxidative function is tightly controlled to maintain energy homeostasis in response to nutrient and hormonal signals. An important cellular component in the energy sensing response is the target of rapamycin (TOR) kinase pathway; however whether and how mTOR controls mitochondrial oxidative activity is unknown. Here, we show that mTOR kinase activity stimulates mitochondrial gene expression and oxidative function. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
12 Samples
Download data: CEL
Series
Accession:
GSE5332
ID:
200005332
14.

Analysis of PGC-1alpha overexpression effects on the whole transcriptome in cultured skeletal muscle cells

(Submitter supplied) The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of the mitochondrial and metatolic program in skeletal muscle (skm) and prevents atrophy. Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of cultured human skeletal myotubes, which display an athropic phenotype. An oligonucleotide microarray analysis was used to reveal PGC-1α effects on the whole transcriptome, and the possible impact on fuel metabolism reprogramming was examined. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6884
6 Samples
Download data: TXT
Series
Accession:
GSE28206
ID:
200028206
15.

Remodeling of Brown and White Adipose Tissue by NT-PGC-1α-Mediated Gene Regulation

(Submitter supplied) The β-adrenergic receptor signaling pathway is a major component of adaptive thermogenesis in brown and white adipose tissue during cold acclimation. The β-AR activation highly induces transcriptional coactivator PGC-1α and its splice variant N-terminal (NT)-PGC-1α, promoting the transcription program of mitochondrial biogenesis and thermogenesis. In the present study, we evaluated the role of NT-PGC-1α in brown adipocyte energy metabolism by genome-wide profiling of NT-PGC-1α-responsive genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL2995
4 Samples
Download data: TXT
Series
Accession:
GSE71774
ID:
200071774
16.

The effects of Mkp-1 knockout and systemic E. coli infection on the transcriptome of the liver

(Submitter supplied) Previously, I have found that Mkp-1 knockout exacerbates inflammation, perturbs lipid metabolism, increases organ damage, mortality, and bacterial burdens. To understand the role of Mkp-1 in the regulation of host defense, we performed RNA-seq analysis using total RNA isolated from livers of uninfected and E. coli-infected wildtype and Mkp-1 knockout mice. Specifically, Mkp-1 wildtype and knockout (both on the C57/129 background) mice were infected with E. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21493
16 Samples
Download data: TXT
Series
Accession:
GSE122741
ID:
200122741
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_60cf022ca51482242c655746|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center