U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Expression data from C2C12 myoblasts transduced with PRDM16 or vector

(Submitter supplied) PRDM16 is a 140 kDa transcriptional coregulatory protein. PRDM16 has been shown to function as a bi-directional switch in brown fat cell fate by stimulating the development of brown fat cells from myf-5 positive myoblastic precursors. We used microarrays to detail the global programme of gene expression underlying the myoblasts-brown fat conversion induced by PRDM16.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL8321
6 Samples
Download data: CEL
Series
Accession:
GSE15895
ID:
200015895
2.

Brown versus white tissue adipose selective genes

(Submitter supplied) The aim of this study was to identify genes expressed selectively in brown adipose tissue as compared to white adipose tissue from the same animals. This analysis provides a gene set that is brown and white adipose selective. Keywords: tissue comparison from mice
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2813
Platform:
GPL1261
6 Samples
Download data: CEL, CHP, DCP, TXT
Series
Accession:
GSE8044
ID:
200008044
3.
Full record GDS2813

Brown and white adipose tissues

Comparison of brown and white adipose tissues. Brown fat cells are specialized to dissipate energy and can counteract obesity. Results provide insight into the molecular mechanisms controlling brown fat cell determination.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 tissue sets
Platform:
GPL1261
Series:
GSE8044
6 Samples
Download data: CEL, CHP, DCP, TXT
4.

Expression data from mouse primary brown preadipocytes

(Submitter supplied) Brown adipocytes are specialized for heat generation and energy expenditure as a defense against cold and obesity. Recent studies demonstrate that brown adipocytes arise in vivo from a Myf5-positive, myoblastic progenitor by the action of PRDM16. Here, we identified a brown fat-enriched miRNA cluster mir-193b-365 as a key regulator of brown fat development. Blocking miR-193b and/or miR-365 in primary brown preadipocytes dramatically impaired brown adipocyte adipogenesis whereas myogenic markers were significantly induced. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL8492
4 Samples
Download data: CEL
Series
Accession:
GSE27614
ID:
200027614
5.

Cistromic and epigenomic changes in Prdm16 knock-out brown adipose tissue

(Submitter supplied) Prdm16 is a transcription factor that drives a complete program of brown adipocyte differentiation, but the mechanism by which Prdm16 activates gene transcription remains unknown. Utilizing ChIP-seq teqhnique, we found that Prdm16 binds to chromatin at/near many brown fat-selective genes in BAT. Interestingly, Prdm16-deficiency dramatically reduced the binding of Med1 to Prdm16-target sites. Indeed, Prdm16 binds and recruits Med1 to BAT-enriched genes and the loss of Prdm16 caused a fundamental change in chromatin architecture at key BAT-selective genes and also reduced transcirptional activity. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13112 GPL11002
11 Samples
Download data: BW
Series
Accession:
GSE63965
ID:
200063965
6.

Epigenome in brown and white adipose tissue

(Submitter supplied) PR (PRD1-BF1-RIZ1 homologous) domain-containing 16 (PRDM16) drives a brown fat differentiation program, but the mechanisms by which PRDM16 activates brown fat-selective genes have been unclear. Through chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) analyses in brown adipose tissue (BAT), we reveal that PRDM16 binding is highly enriched at a broad set of brown fat-selective genes. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
8 Samples
Download data: BW
Series
Accession:
GSE63964
ID:
200063964
7.

PPARg agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein

(Submitter supplied) Brown adipose tissue dissipates energy through heat and functions as a defense against cold and obesity. PPARγ ligands have been shown to induce the browning of white adipocytes; however, the underlying mechanisms remain unclear. Here we show that PPARγ ligands require full agonism to induce a brown fat gene program preferentially in subcutaneous white adipose. These effects require expression of PRDM16, a factor that controls the development of classical brown fat. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS4021
Platform:
GPL8321
8 Samples
Download data: CEL
Series
Accession:
GSE35011
ID:
200035011
8.
Full record GDS4021

Rosiglitazone effect on PRDM16-deficient inguinal white adipose tissue: stromal-vascular cells

Analysis of SV cells isolated from PRDM16-depleted inguinal white adipose tissue (WAT) treated with rosiglitazone. Antidiabetic PPARγ ligand drugs, such as rosiglitazone, activate a browning of WAT. Results provide insight into molecular mechanisms underlying white-to-brown fat conversion.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 agent, 2 genotype/variation sets
Platform:
GPL8321
Series:
GSE35011
8 Samples
Download data: CEL
9.

Expression Profiles of miRNAs in brown fat of mice at room temperature and cold exposure (8C)

(Submitter supplied) microRNAs levels were measured in brown adipose tissue of male C57Bl6N mice that were kept at RT or during cold exposure (8°C) for 24 hrs. Several miRNAs including myomirs were identified to be regulated in response to cold.
Organism:
Mus musculus
Type:
Non-coding RNA profiling by array
Platform:
GPL7732
8 Samples
Download data: TXT
Series
Accession:
GSE41306
ID:
200041306
10.

Programming human pluripotent stem cells into adipocytes

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platforms:
GPL13607 GPL6244 GPL570
58 Samples
Download data: CEL, TXT
Series
Accession:
GSE30041
ID:
200030041
11.

Programming human pluripotent stem cells into adipocytes [Agilent]

(Submitter supplied) The utility of human pluripotent stem cells as a tool for understanding disease and as a renewable source of cells for transplantation therapies is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into adipocytes. We found that inducible expression of PPARG2 in pluripotent stem cell-derived mesenchymal progenitor cells programmed their development towards an adipocyte cell fate. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL13607
24 Samples
Download data: TXT
Series
Accession:
GSE30039
ID:
200030039
12.

Programming human pluripotent stem cells into adipocytes [Affymetrix]

(Submitter supplied) The utility of human pluripotent stem cells as a tool for understanding disease and as a renewable source of cells for transplantation therapies is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into adipocytes. We found that inducible expression of PPARG2 in pluripotent stem cell-derived mesenchymal progenitor cells programmed their development towards an adipocyte cell fate. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platforms:
GPL570 GPL6244
34 Samples
Download data: CEL, TXT
Series
Accession:
GSE30038
ID:
200030038
13.

RNA-Seq of subcutaneous inguinal white fat of Hlx transgenic mice and littermate controls.

(Submitter supplied) RNA-Seq of subcutaneous inguinal white fat of Hlx transgenic mice and littermate controls.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
6 Samples
Download data: TXT
Series
Accession:
GSE78143
ID:
200078143
14.

Gene expression analysis of RNAs isolated from inguinal White Adipose Tissue (iWAT) of ZIP13-KO mice and their WT littermate mice

(Submitter supplied) In order to assess overall gene expression change in objectively, we performed a microarray analysis of iWAT derived from ZIP13-KO mice and their WT littermate mice
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL13912
6 Samples
Download data: TXT
Series
Accession:
GSE77933
ID:
200077933
15.

Identification of Pax7 target genes in muscle progenitor cells from young mice

(Submitter supplied) To identify Pax7 target genes in muscle progenitor cells, we compared the transcriptome profiles of muscle progenitor cells from young mice (P12) with and without Pax7.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11002
2 Samples
Download data: XLS
Series
Accession:
GSE97690
ID:
200097690
16.

NFIA Controls the Brown Fat Gene Program by Co-Localizing with PPARgamma at Cell-Type-Specific Enhancers

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL17021 GPL16417 GPL11002
48 Samples
Download data: BIGWIG, TXT
Series
Accession:
GSE83764
ID:
200083764
17.

NFIA Controls the Brown Fat Gene Program by Co-Localizing with PPARgamma at Cell-Type-Specific Enhancers (RNA)

(Submitter supplied) Brown fat dissipates energy as heat and protects against obesity. Here, we identified nuclear factor I-A (NFIA) as a novel transcriptional regulator of brown fat by a genome-wide open chromatin analysis of murine brown and white fat followed by motif analysis of brown-fat-specific open chromatin regions. NFIA and the adipogenic master regulator, PPARγ, co-localize at the brown-fat-specific enhancers. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
24 Samples
Download data: TXT
Series
Accession:
GSE83762
ID:
200083762
18.

NFIA Controls the Brown Fat Gene Program by Co-Localizing with PPARgamma at Cell-Type-Specific Enhancers (chromatin)

(Submitter supplied) Brown fat dissipates energy as heat and protects against obesity. Here, we identified nuclear factor I-A (NFIA) as a novel transcriptional regulator of brown fat by a genome-wide open chromatin analysis of murine brown and white fat followed by motif analysis of brown-fat-specific open chromatin regions. NFIA and the adipogenic master regulator, PPARgamma, co-localize at the brown-fat-specific enhancers. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL11002 GPL16417 GPL17021
24 Samples
Download data: BEDGRAPH, BIGWIG
Series
Accession:
GSE83757
ID:
200083757
19.

Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation

(Submitter supplied) Mitochondria play an essential role in the ability of brown fat to generate heat, and the PGC-1 coactivators control several aspects of mitochondrial biogenesis. To investigate their specific roles in brown fat cells, we generated immortal preadipocyte lines from the brown adipose tissue of mice lacking PGC-1α. We could then efficiently knockdown PGC-1β expression by shRNA expression. Loss of PGC-1α did not alter brown fat differentiation but severely reduced the induction of thermogenic genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2123
Platform:
GPL1261
6 Samples
Download data
Series
Accession:
GSE5042
ID:
200005042
20.

Expression of the brown fat thermogenic gene program requires PGC-1alpha

(Submitter supplied) To investigate the specific role of PGC-1 coactivators in brown fat cells, we generated immortal preadipocyte lines from the brown adipose tissue of mice lacking PGC-1alpha. We could then efficiently knockdown PGC-1beta expression by shRNA expression. Loss of PGC-1alpha did not alter brown fat differentiation but severly reduced the induction of thermogenic genes. In order to assess the specific requirement for PGC-1α in the global transcriptional response to cAMP, we used Affymetrix arrays to compare the sets of genes induced in response to a 4 hr dbcAMP treatment in differentiated wt and KO cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2149
Platform:
GPL1261
8 Samples
Download data
Series
Accession:
GSE5041
ID:
200005041
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_6627b5d1e53bb618e1da82a7|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center