Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Epiblast stem cell subpopulations represent mouse embryos of distinct pregastrulation stages

(Submitter supplied) Embryonic stem cells (ESCs) comprise at least two populations of cells with divergent states of pluripotency. Here, we show that epiblast stem cells (EpiSCs) also comprise two distinct cell populations that can be distinguished by the expression of a specific Oct4-GFP marker. These two subpopulations, Oct4-GFP positive and negative EpiSCs, are capable of converting into each other in vitro. Oct4-GFP positive and negative EpiSCs are distinct from ESCs with respect to global gene expression pattern, epigenetic profile, and Oct4 enhancer utilization. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
11 Samples
Download data: TXT
Series
Accession:
GSE17984
ID:
200017984
2.

Distinct developmental ground states of different epiblast stem cell lines determine pluripotency features

(Submitter supplied) Epiblast stem cells (EpiSC) are pluripotent stem cells derived from mouse postimplantation embryos between E5.5 to E7.5, a time window in which gastrulation commences. Therefore, EpiSC represent a valuable tool for studying mammalian postimplantation development in vitro. Beyond their pluripotent features, EpiSC can also be reprogrammed into a mouse embryonic stem cell-like (mESC) state. Published reports showed that EpiSC reversion requires transcription factor overexpression, while others suggest that applying stringent mESC culture conditions alone was sufficient to revert EpiSC to mESC-like cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
7 Samples
Download data: TXT
Series
Accession:
GSE28270
ID:
200028270
3.

Direct Conversion of Trophoblast Stem Cells into Pluripotent Stem Cells by Oct4

(Submitter supplied) Embryonic stem (ES) cells and trophoblast stem (TS) cells are both derived from early embryos, yet these cells have distinct differentiation properties. ES cells can differentiate into all three germ layer cell types, whereas TS cells can only differentiate into placental cells. It has not been determined whether TS cells can be converted into ES-like pluripotent stem (PS) cells. Here we report that overexpression of a single transcription factor, Oct4, in TS cells is sufficient to convert TS cells into a pluripotent state. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
9 Samples
Download data: CEL
Series
Accession:
GSE25255
ID:
200025255
4.

Developmental equivalence of epiblast stem cells (EpiSCs)

(Submitter supplied) Epiblast stem cells (EpiSCs) were derived from the epiblast or the ectoderm (epi/ect) of pre-gastrula stage to late-bud stage mouse embryos. To identify if the EpiSCs retain any original stage specific characteristics or which developmental stage of epi/ect they most closely related to, we performed microarray analysis to compare the gene expression profile of multiple EpiSC lines with that of epi/ect of 7 different stages.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6887
112 Samples
Download data: TXT
Series
Accession:
GSE46227
ID:
200046227
5.

Isolation of epiblast stem cells from pre-implantation mouse embryos

(Submitter supplied) Pluripotent stem cells provide a platform to interrogate control elements that function to generate all cell types of the body. Despite their utility for modeling development and disease, the relationship of mouse and human pluripotent stem cell states to one another remains largely undefined. We have shown that mouse embryonic stem (ES) cells and epiblast stem cells (EpiSCs) are distinct, pluripotent states isolated from pre- and post-implantation embryos respectively. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL4134
6 Samples
Download data: TXT
Series
Accession:
GSE26814
ID:
200026814
6.

Genome-wide comparison of EpiSC lines derived from fertilized (FT) and somatic cell nuclear transfer (NT) embryos

(Submitter supplied) Genome wide comparison of gene expression between EpiSC lines derived from fertilized (FT) embryos and somatic cell nuclear transfer (NT) embryos. EpiSC lines were derived from fertilized and somatic cell nuclear transfer embryos and cultured until 15 to 20 passages. RNA was then extracted in order to compare transcriptomic profiles.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6887
18 Samples
Download data: TXT
Series
Accession:
GSE17402
ID:
200017402
7.

Comparative FAIRE-seq analysis reveals distinguishing features of the chromatin structure of ground state- and primed pluripotent cells

(Submitter supplied) We utilized FAIRE-seq to identify accesible chromatin in mouse embryonic-, epiblast-, and neural- stem cells in addition to mouse embryonic fibroblasts. Analysis of these data sets reveal cell type specific chromatin signatures that differentiate naïve and primed pluripotency. Functional analysis of type-specific peaks revealed cell-type specific enhancers.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11002
10 Samples
Download data: BED, WIG
Series
Accession:
GSE58520
ID:
200058520
8.

Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors

(Submitter supplied) Reprogramming of somatic cells is a valuable tool to understand the mechanisms of regaining pluripotency and further opens up the possibility of generating patient-specific pluripotent stem cells. Reprogramming of mouse and human somatic cells into pluripotent stem cells, designated as induced pluripotent stem (iPS) cells, has been possible with the expression of the transcription factor quartet Oct4 (also known as Pou5f1), Sox2, c-Myc, and Klf4. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
11 Samples
Download data: CEL
Series
Accession:
GSE10806
ID:
200010806
9.

Gene expression profiles of EpiSCs under epiblastic and neural plate developmental conditions

(Submitter supplied) Epiblast stem cells (EpiSCs) were placed in the epiblastic cell maintenance condition (EpiSC) or in a neural plate developmental condition (Iwafuchi-Doi et al. Dev Biol 352, 354-366, 2011) for one (NPC1) or two (NPC2) days, and expression profiles of total mRNAs were compared.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL13912
6 Samples
Download data: TXT
Series
Accession:
GSE38085
ID:
200038085
10.

The DNA methylome of Epiblast Stem Cells and Embryonic Stem Cells is distinct and not fully reversible

(Submitter supplied) Embryonic Stem Cells (ESCs) and Epiblast Stem Cells (EpiSCs) are the in vitro representants of naïve and primed pluripotency, respectively. It is currently unclear how their epigenome underpin the phenotypic and molecular characteristics of these states of pluripotency. Here, we performed the first qualitative and quantitative comparison of DNA methylation between ESCs and EpiSCs. The global level and genomic distribution of DNA methylation were very similar between the two cell types. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platforms:
GPL13112 GPL11002
6 Samples
Download data: BED, WIG
Series
Accession:
GSE47793
ID:
200047793
11.

Oct4-Induced Pluripotency in Adult Neural Stem Cells

(Submitter supplied) The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-specific transcription factor Oct4 is sufficient to generate pluripotent stem cells from adult mouse NSCs. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
10 Samples
Download data: CEL, CHP
Series
Accession:
GSE12499
ID:
200012499
12.

Breaking the epigenetic barrier during reversion of post-implantation epiblast cells

(Submitter supplied) Primitive ectoderm cells (PE) in blastocysts represent the foundation of the pluripotent state, which is lost progressively during development. For example, development of epiblast cells from PE in postimplantation embryos is accompanied by transcriptional and epigenetic changes, including DNA methylation and X inactivation (Refs); these changes alter the nature of epiblast cells fundamentally, affecting their responsiveness to signaling molecules, and constitute a robust boundary that prevents their reversion to a PE-like state. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL2995
12 Samples
Download data: TXT
Series
Accession:
GSE15487
ID:
200015487
13.

Activin A in Combination with ERK1/2 MAPK Pathway Inhibition Sustains Propagation of Mouse Embryonic Stem Cells

(Submitter supplied) Activin/Nodal/TGF-β signaling pathway plays a major role in maintaining mouse epiblast stem cells (mEpiSCs). The mEpiSC medium which contains Activin A and bFGF induces differentiation of mouse embryonic stem cells (mESCs) to mEpiSC. Here we show that Activin A also has an ability to efficiently propagate mESCs without differentiation to mEpiSCs when combined with a MEK inhibitor PD0325901. mESCs cultured in Activin+PD retained high-level expression of naive pluripotency-related transcription factors. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL16570
3 Samples
Download data: CEL
Series
Accession:
GSE84679
ID:
200084679
14.

Activin A in combination with ERK1/2 MAPK pathway inhibition sustains propagation of mouse embryonic stem cells

(Submitter supplied) The combination of Wnt pathway activation by the GSK3 inhibitor and ERK pathway inhibition by the MEK inhibitor, which is known as 2i is a well-established method to maintain mouse embryonic stem cell (mESC) self-renewal. Here we show that Activin A also has the ability to promote naive pluripotency of mESCs when combined with the MEK inhibitor PD0325901. mESCs were efficiently propagated in a medium containing both Activin A and the MEK inhibitor (PD0325901). more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL16570
6 Samples
Download data: CEL
Series
Accession:
GSE74963
ID:
200074963
15.

Reconstitution of the mouse germ-cell specification pathway in culture by pluripotent stem cells

(Submitter supplied) The generation of properly functioning gametes in vitro, a key goal in developmental/reproductive biology, requires multi-step reconstitutions of complex germ cell development. Based on the logic of primordial germ cell (PGC)-specification, we demonstrate here the generation of PGC-like cells (PGCLCs) in mice with robust capacity for spermatogenesis from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) through epiblast-like cells (EpiLCs), a cellular state highly similar to pre-gastrulating epiblasts, but distinct from epiblast stem cells (EpiSCs). more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
24 Samples
Download data: CEL
Series
Accession:
GSE30056
ID:
200030056
16.

Generation of parthenogenetic iPS cells from parthenogenetic neural stem cell

(Submitter supplied) In pluripotential reprogramming, a pluripotent state is established within somatic cells. In this study, we have generated induced pluripotent stem (iPS) cells from bi-maternal (uniparental) parthenogenetic neural stem cells (pNSCs) by transduction with four (Oct4, Klf4, Sox2, and c-Myc) or two (Oct4 and Klf4) transcription factors. The parthenogenetic iPS (piPS) cells directly reprogrammed from pNSCs were able to generate germline-competent himeras, and hierarchical clustering analysis showed that piPS cells were clustered more closer to parthenogenetic ES cells than normal female ES cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
10 Samples
Download data: TXT
Series
Accession:
GSE15561
ID:
200015561
17.

Metastable pluripotent states in NOD mouse derived ES cells

(Submitter supplied) Embryonic stem (ES) cells are isolated from the inner cell mass (ICM) of developing blastocysts, whereas epiblast stem cells (EpiSCs) are derived from the post-implantation epiblast and are characterized by a restricted developmental potential. Although certain mouse strains, such as the non-obese diabetic (NOD) mice, are considered “non-permissive” for ES cell derivation, they retain the capacity to generate EpiSCs. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL4134
16 Samples
Download data: TXT
Series
Accession:
GSE15603
ID:
200015603
18.

Allele-specific expression profiling of imprinted genes in mouse isogenic pluripotent tissues and cell lines

(Submitter supplied) Genomic imprinting, resulting in parent-of-origin specific gene expression, plays a critical role in mammalian development. Here, we perform allele-specific RNA-Seq on isogenic B6D2F1 mice to assay imprinted genes in tissues from early embryonic stages and in pluripotent cell lines. For the cell lines, we include embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) derived from fertilized embryos or from embryos obtained after nuclear transfer (NT), as well as B6D2F1 ESCs and EpiSCs derived after parthenogenetic activation (PGA). more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19057 GPL13112 GPL11002
22 Samples
Download data: WIG
Series
Accession:
GSE101292
ID:
200101292
19.

Mammalian embryo comparison identifies novel pluripotency genes associated with the naïve or primed state

(Submitter supplied) During early mammalian development transient pools of pluripotent cells emerge that can be immortalised upon stem cell derivation. The pluripotent state, "naïve" or "primed", depends on the embryonic stage and derivation conditions used. Here we analyse the temporal gene expression patterns of mouse, cattle and porcine embryos at stages that harbour different types of pluripotent cells. We document conserved and divergent traits in gene expression, and identify predictor genes shared across the species that are associated with pluripotent states in vivo and in vitro Amongst these are the pluripotency-linked genes Klf4 and Lin28b The novel genes discovered include naïve- (Spic, Scpep1 and Gjb5) and primed-associated (Sema6a and Jakmip2) genes as well as naïve-to primed transition genes (Dusp6 and Trip6). more...
Organism:
Bos taurus; Mus musculus; Sus scrofa
Type:
Expression profiling by high throughput sequencing
4 related Platforms
34 Samples
Download data: BEDGRAPH, WIG
Series
Accession:
GSE53387
ID:
200053387
20.

Novel cell lines from mouse epiblast share defining features with human embryonic stem cells

(Submitter supplied) The application of human embryonic stem (ES) cells has an inherent reliance on understanding the starting cell population. Human ES cells differ from mouse ES cells and the specific embryonic origin of both cell types is unclear. Previous work suggested that mouse ES cells could only be obtained from the embryo prior to implantation in the uterus. Here we show that cell lines can be derived from the epiblast, a tissue of the post-implantation embryo that generates the embryo proper. more...
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by array
Platforms:
GPL2507 GPL4133 GPL4134
12 Samples
Download data: TXT
Series
Accession:
GSE7902
ID:
200007902
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=5|blobid=MCID_6149bca72996262e707df23d|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center