U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Methylation profiling by high throughput sequencing
Platforms:
GPL14661 GPL9250
12 Samples
Download data: BED, CEL, WIG
Series
Accession:
GSE34267
ID:
200034267
2.

Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity [MRE-seq]

(Submitter supplied) The TET family of FE(II) and 2-oxoglutarate-dependent enzymes (Tet1/2/3) promote DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which they further oxidize into 5-formylcytosine and 5-carboxylcytosine. Tet1 is robustly expressed in mouse embryonic stem cells (mESCs) and has been implicated in mESC maintenance. Here we demonstrate that, unlike genetic deletion, RNAi-mediated depletion of Tet1 in mESCs led to a significant reduction in 5hmC and loss of mESC identity. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL9250
4 Samples
Download data: BED, WIG
Series
Accession:
GSE34887
ID:
200034887
3.

Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity [expression profiling]

(Submitter supplied) The TET family of FE(II) and 2-oxoglutarate-dependent enzymes (Tet1/2/3) promote DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which they further oxidize into 5-formylcytosine and 5-carboxylcytosine. Tet1 is robustly expressed in mouse embryonic stem cells (mESCs) and has been implicated in mESC maintenance. Here we demonstrate that, unlike genetic deletion, RNAi-mediated depletion of Tet1 in mESCs led to a significant reduction in 5hmC and loss of mESC identity. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL14661
8 Samples
Download data: CEL
Series
Accession:
GSE34886
ID:
200034886
4.

Genome-wide Regulation of 5hmC, 5mC and Gene Expression by Tet1 Hydroxylase in Mouse Embryonic Stem Cells (bisulfite sequencing data)

(Submitter supplied) DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL11002
4 Samples
Download data: BED, TXT
Series
Accession:
GSE28533
ID:
200028533
5.

Genome-wide Regulation of 5hmC, 5mC and Gene Expression by Tet1 Hydroxylase in Mouse Embryonic Stem Cells (ChIP-seq data)

(Submitter supplied) DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL9185
14 Samples
Download data: BED
Series
Accession:
GSE28532
ID:
200028532
6.

Genome-wide Regulation of 5hmC, 5mC and Gene Expression by Tet1 Hydroxylase in Mouse Embryonic Stem Cells (expression data)

(Submitter supplied) DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
5 Samples
Download data: CEL
Series
Accession:
GSE28530
ID:
200028530
7.

Genome-wide Regulation of 5hmC, 5mC and Gene Expression by Tet1 Hydroxylase in Mouse Embryonic Stem Cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL11002 GPL9185 GPL1261
23 Samples
Download data: BED, CEL
Series
Accession:
GSE28500
ID:
200028500
8.

Gene expression profile of Tet1 knockout mouse embryonic stem cells (mESCs)

(Submitter supplied) Global gene expression profile of Tet1 knockout ES cells is compared to wild-type ES cells. All ES lines used are V6.5 (mix 129 C57BL6 backgound).
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL4134
3 Samples
Download data: TXT
Series
Accession:
GSE30748
ID:
200030748
9.

The Histone Deacetylase Sirt6 Controls Embryonic Stem Cell Fate Via Tet-Mediated Production of 5-Hydroxymethylcytosine

(Submitter supplied) How embryonic stem cells (ESC) commit to specific cell lineages and ultimately yield all cell types of a fully formed organism remains a major question. ESC differentiation is accompanied by large-scale histone and DNA modifications, but the relations between these two categories of epigenetic changes are not understood. Here we demonstrate the hierarchical interplay between the histone deacetylase, sirtuin 6 (Sirt6), which targets acetylated histone H3 at lysines 9 and 56 (H3K9ac and H3K56ac), and the Tet (Ten-eleven translocation) enzymes, which convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platforms:
GPL17021 GPL13112
17 Samples
Download data: TDF, TXT
Series
Accession:
GSE65836
ID:
200065836
10.

Effect of Tet1-knockdown on gene expression in mouse ES cells cultured in ES and TS cell culture conditions

(Submitter supplied) TET-family enzymes convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. Tet1 and Tet2 are Oct4-regulated enzymes that together sustain 5hmC in mouse embryonic stem (ES) cells. ES cells depleted of Tet1 by RNAi show diminished expression of the Nodal antagonist Lefty1, and display hyperactive Nodal signalling and skewed differentiation into the endoderm-mesoderm lineage in embryoid bodies in vitro. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6887
27 Samples
Download data: TXT
Series
Accession:
GSE26900
ID:
200026900
11.

Distinct roles of Tet1 and Tet2 in mouse embryonic stem cells [MeDIP-Seq]

(Submitter supplied) The TET proteins TET1, TET2 and TET3 constitute a new family of dioxygenases that utilize molecular oxygen and the cofactors Fe(II) and 2-oxoglutarate to convert 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine (5hmC) and further oxidation products in DNA1-5. Here we show that Tet1 and Tet2 have distinct roles in regulating 5hmC deposition and gene expression in mouse embryonic stem cells (mESC). Tet1 depletion in mESC primarily diminishes 5hmC levels at transcription start sites (TSS), whereas Tet2 depletion is mostly associated with decreased 5hmC in gene bodies relative to TSS. 5hmC is enriched at exon start and end sites, especially in exons that are highly expressed, and is significantly decreased upon Tet2 knockdown at the boundaries of high-expressed exons that are selectively regulated by Tet2. In differentiating murine B cells, Tet2 deficiency is associated with selective exon exclusion in the gene encoding the transmembrane phosphatase CD45. Tet2 depletion is associated with increased 5hmC and decreased 5mC at promoters/ TSS regions, possibly because of the redundant activity of Tet1. Together, these data indicate a complex interplay between Tet1 and Tet2 in mESC, and show that loss-of-function of a single TET protein does not necessarily lead to loss of 5hmC and a corresponding gain of 5mC, as generally assumed. The relation between Tet2 loss-of-function and selective changes in exon expression could potentially explain the frequent occurrence of both TET2 loss-of-function mutations and mutations in proteins involved in pre-mRNA splicing in myeloid malignancies in humans.
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL13112
6 Samples
Download data: BED, TXT
Series
Accession:
GSE63771
ID:
200063771
12.

Distinct roles of Tet1 and Tet2 in mouse embryonic stem cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Other; Methylation profiling by high throughput sequencing
5 related Platforms
34 Samples
Download data: BED
Series
Accession:
GSE50201
ID:
200050201
13.

Distinct roles of Tet1 and Tet2 in mouse embryonic stem cells (CMS-Seq)

(Submitter supplied) The TET proteins TET1, TET2 and TET3 constitute a new family of dioxygenases that utilize molecular oxygen and the cofactors Fe(II) and 2-oxoglutarate to convert 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine (5hmC) and further oxidation products in DNA1-5. Here we show that Tet1 and Tet2 have distinct roles in regulating 5hmC deposition and gene expression in mouse embryonic stem cells (mESC). Tet1 depletion in mESC primarily diminishes 5hmC levels at transcription start sites (TSS), whereas Tet2 depletion is mostly associated with decreased 5hmC in gene bodies relative to TSS. 5hmC is enriched at exon start and end sites, especially in exons that are highly expressed, and is significantly decreased upon Tet2 knockdown at the boundaries of high-expressed exons that are selectively regulated by Tet2. In differentiating murine B cells, Tet2 deficiency is associated with selective exon exclusion in the gene encoding the transmembrane phosphatase CD45. Tet2 depletion is associated with increased 5hmC and decreased 5mC at promoters/ TSS regions, possibly because of the redundant activity of Tet1. Together, these data indicate a complex interplay between Tet1 and Tet2 in mESC, and show that loss-of-function of a single TET protein does not necessarily lead to loss of 5hmC and a corresponding gain of 5mC, as generally assumed. The relation between Tet2 loss-of-function and selective changes in exon expression could potentially explain the frequent occurrence of both TET2 loss-of-function mutations and mutations in proteins involved in pre-mRNA splicing in myeloid malignancies in humans.
Organism:
Mus musculus
Type:
Other
Platforms:
GPL9250 GPL15103
16 Samples
Download data: TXT
Series
Accession:
GSE50200
ID:
200050200
14.

Distinct roles of Tet1 and Tet2 in mouse embryonic stem cells (RNA-Seq)

(Submitter supplied) The TET proteins TET1, TET2 and TET3 constitute a new family of dioxygenases that utilize molecular oxygen and the cofactors Fe(II) and 2-oxoglutarate to convert 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine (5hmC) and further oxidation products in DNA1-5. Here we show that Tet1 and Tet2 have distinct roles in regulating 5hmC deposition and gene expression in mouse embryonic stem cells (mESC). Tet1 depletion in mESC primarily diminishes 5hmC levels at transcription start sites (TSS), whereas Tet2 depletion is mostly associated with decreased 5hmC in gene bodies relative to TSS. 5hmC is enriched at exon start and end sites, especially in exons that are highly expressed, and is significantly decreased upon Tet2 knockdown at the boundaries of high-expressed exons that are selectively regulated by Tet2. In differentiating murine B cells, Tet2 deficiency is associated with selective exon exclusion in the gene encoding the transmembrane phosphatase CD45. Tet2 depletion is associated with increased 5hmC and decreased 5mC at promoters/ TSS regions, possibly because of the redundant activity of Tet1. Together, these data indicate a complex interplay between Tet1 and Tet2 in mESC, and show that loss-of-function of a single TET protein does not necessarily lead to loss of 5hmC and a corresponding gain of 5mC, as generally assumed. The relation between Tet2 loss-of-function and selective changes in exon expression could potentially explain the frequent occurrence of both TET2 loss-of-function mutations and mutations in proteins involved in pre-mRNA splicing in myeloid malignancies in humans.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL14602 GPL10010
12 Samples
Download data: TXT
Series
Accession:
GSE50198
ID:
200050198
15.

Genome-wide analysis identifies a functional association of Tet1 and Polycomb PRC2 in mouse embryonic stem cells but not in differentiated tissues

(Submitter supplied) Recent studies have analyzed the distribution and role of 5-hydroxymethylcytosin (5hmC) in Embryonic Stem Cells (ESC). However, DNA hydroxymethylation occurs also in differentiated cells and it is significantly deregulated in cancer. Here we mapped 5hmC genome-wide profile in pluripotent ES cells in comparison to embryonic and adult differentiated cells. Comparative analysis of 5hmC genomic distribution with respect to gene expression reveals that 5hmC is enriched on the gene body of genes expressed at medium/high level and on TSS of genes not expressed or expressed at low level independently from the cell type. more...
Organism:
Mus musculus
Type:
Methylation profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL16173
8 Samples
Download data: BED, BEDGRAPH
Series
Accession:
GSE44566
ID:
200044566
16.

Bcl3 target genes in mESCs

(Submitter supplied) Bcl3 is expressed in mESCs. ChIP-seq was used to identify its binding pattern and target genes.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9185
2 Samples
Download data: XLSX
Series
Accession:
GSE70246
ID:
200070246
17.

LIF signaling-dependent gene expression

(Submitter supplied) Leukemia Inhibitory Factor (LIF) plays an essential role in the maintenance of pluripotency of mouse embryonic stem cells (mESCs). LIF withdrawal induces mESC differentiation. To define noval pluripotent factors downstream of LIF signaling, cDNA microarray was used and seveal well-known pluripotent genes were found to respond to LIF withdrawal, including Klf4, Esrrb, Tbx3, and Prdm14.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
4 Samples
Download data: CEL
Series
Accession:
GSE70104
ID:
200070104
18.

Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by genome tiling array; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by genome tiling array
6 related Platforms
38 Samples
Download data: CEL, PAIR, TXT
Series
Accession:
GSE26833
ID:
200026833
19.

Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells (ChIP-Seq)

(Submitter supplied) Epigenetic modification of the mammalian genome by DNA methylation (5-methylcytosine) has a profound impact on chromatin structure, gene expression and maintenance of cellular identity. Recent demonstration that members of the Ten-eleven translocation (Tet) family proteins can convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) raised the possibility that Tet proteins are capable of establishing a distinct epigenetic state. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9185
6 Samples
Download data: TXT
Series
Accession:
GSE26832
ID:
200026832
20.

Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells (mRNA)

(Submitter supplied) Epigenetic modification of the mammalian genome by DNA methylation (5-methylcytosine) has a profound impact on chromatin structure, gene expression and maintenance of cellular identity. Recent demonstration that members of the Ten-eleven translocation (Tet) family proteins can convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) raised the possibility that Tet proteins are capable of establishing a distinct epigenetic state. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
12 Samples
Download data: CEL
Series
Accession:
GSE26830
ID:
200026830
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=2|blobid=MCID_662863fb862bea0a3f8ba10d|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center