Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Skeletal muscle PGC-1a mediates mitochondrial, but not metabolic, changes during calorie restriction.

(Submitter supplied) Calorie restriction (CR) is a dietary intervention that extends lifespan and healthspan in a variety of organisms. CR improves mitochondrial energy production, fuel oxidation and reactive oxygen species scavenging in skeletal muscle and other tissues, and these processes are thought to be critical to the benefits of CR. PGC-1a is a transcriptional coactivator that regulates mitochondrial function and is induced by CR. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
26 Samples
Download data: CEL
Series
Accession:
GSE34773
ID:
200034773
2.

mTOR pathway controls mitochondrial gene expression and respiration through the YY1/PGC-1alpha transcriptional complex

(Submitter supplied) Mitochondrial oxidative function is tightly controlled to maintain energy homeostasis in response to nutrient and hormonal signals. An important cellular component in the energy sensing response is the target of rapamycin (TOR) kinase pathway; however whether and how mTOR controls mitochondrial oxidative activity is unknown. Here, we show that mTOR kinase activity stimulates mitochondrial gene expression and oxidative function. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
12 Samples
Download data: CEL
Series
Accession:
GSE5332
ID:
200005332
3.

Progressive loss of PGC-1alpha expression in aging muscle potentiates glucose intolerance and systemic inflammation

(Submitter supplied) Decreased mitochondrial mass and function in muscle of diabetic patients is associated with low PGC-1alpha, a transcriptional coactivator of the mitochondrial gene program. To investigate whether reduced PGC-1alpha and oxidative capacity in muscle directly contributes to age-related glucose intolerance, we compared the genetic signatures and metabolic profiles of aging mice lacking muscle PGC-1alpha. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS4904
Platform:
GPL1261
12 Samples
Download data: CEL
Series
Accession:
GSE52550
ID:
200052550
4.
Full record GDS4904

Peroxisome proliferator-γ coactivator-1α deficiency effect on aged gastrocnemius muscle

Analysis of muscle from aged animals with muscle-specific Pgc-1α depletion. PGC-1alpha is a transcriptional coactivator of the mitochondrial gene program. Results provide insight into the role of Pgc-1α in the glucose intolerance and chronic systemic inflammation associated with aging.
Organism:
Mus musculus
Type:
Expression profiling by array, transformed count, 2 age, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE52550
12 Samples
Download data: CEL
5.

Analysis of PGC-1alpha overexpression effects on the whole transcriptome in cultured skeletal muscle cells

(Submitter supplied) The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of the mitochondrial and metatolic program in skeletal muscle (skm) and prevents atrophy. Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of cultured human skeletal myotubes, which display an athropic phenotype. An oligonucleotide microarray analysis was used to reveal PGC-1α effects on the whole transcriptome, and the possible impact on fuel metabolism reprogramming was examined. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6884
6 Samples
Download data: TXT
Series
Accession:
GSE28206
ID:
200028206
6.

The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defense in skeletal muscles

(Submitter supplied) Transcriptional microarray analysis was conducted on gastrocnemius muscle of control and PGC-1β(i)skm-/- mice one week after the last tamoxifen administration using the Affymetrix Mouse Gene 1.0 ST.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
2 Samples
Download data: CEL, CHP
Series
Accession:
GSE73572
ID:
200073572
7.

Microarray analysis of skeletal muscle in PGC1α transgenic mice

(Submitter supplied) Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC1α) is a coactivator of various nuclear receptors and other transcription factors that shows increased expression in skeletal muscle during exercise. In skeletal muscle, PGC1α is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL4134
4 Samples
Download data: TXT
Series
Accession:
GSE67049
ID:
200067049
8.

PGC-1 alpha isoforms and muscle hypertrophy

(Submitter supplied) An alternative promoter of the PGC-1alpha gene gives rise to three new PGC-1alpha isoforms refered to as PGC-1a2 (A2), PGC-1a3 (A3) and PGC-1a4 (A4). The proximal PGC-1 alpha promotor transcribes the canonical PGC-1 alpha which is refered to as PGC-1a1 (A1).G1/G2/G3 samples refer to the Green fluorescent protein (GFP) control samples used in this experiment. Forced expression of the PGC-1a4 isoform results in muslce hypertrophy associated with increased IGF-1 signaling and repression of myostatin signaling.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
15 Samples
Download data: CEL
Series
Accession:
GSE42473
ID:
200042473
9.

Gene Expression Profiling of PGC-1a KO mouse striata

(Submitter supplied) Huntington’s Disease (HD) is an inherited neurodegenerative disease caused by a glutamine repeat expansion in huntingtin protein. Transcriptional deregulation and altered energy metabolism have been implicated in HD pathogenesis. We report here that mutant huntingtin causes disruption of mitochondrial function by inhibiting expression of PGC-1a, a transcriptional coactivator that regulates several metabolic processes including mitochondrial biogenesis and respiration. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2391
Platform:
GPL1261
6 Samples
Download data
Series
Accession:
GSE5786
ID:
200005786
10.
Full record GDS2391

PGC-1alpha transcriptional coactivator null mutation effect on the brain striatum

Analysis of brain striatum of PGC-1alpha transcriptional coactivator null mutants. PGC-1alpha regulates several metabolic processes. Altered energy metabolism is implicated in Huntington's disease (HD). Results provide insight into the role of PGC-1alpha in HD pathogenesis.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE5786
6 Samples
Download data
DataSet
Accession:
GDS2391
ID:
2391
11.

Pyruvate induces mitochondrial biogenesis by a PGC-1alpha independent mechanism

(Submitter supplied) The present study examines the impact of altering energy provision on mitochondrial biogenesis in muscle cells. C2C12 myoblasts were chronically treated with supraphysiological levels of sodium pyruvate for 72 hr. Treated cells exhibited increased mitochondrial protein expression, basal respiratory rate and maximal oxidative capacity. The increase in mitochondrial biogenesis was independent of increases in PGC-1alpha and PGC-1alpha mRNA expression. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2265
Platform:
GPL1261
6 Samples
Download data
Series
Accession:
GSE5497
ID:
200005497
12.
Full record GDS2265

Pyruvate effect on muscle cells

Analysis of C2C12 myoblasts treated with supraphysiological levels of sodium pyruvate for 72 hours. Pyruvate increases mitochondrial biogenesis in muscle myoblasts. Results provide insight into the impact of altering energy provision on mitochondrial biogenesis in muscle cells.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 agent sets
Platform:
GPL1261
Series:
GSE5497
6 Samples
Download data
DataSet
Accession:
GDS2265
ID:
2265
13.

Gene expression analysis of Ncor1 muscle-specific knockout and PGC-1alpha muscle-specific transgenic skeletal muscle

(Submitter supplied) In the present study we have studied the mechanistic and functional aspects of NCoR1 function in mouse skeletal muscle. NCoR1 muscle-specific knockout mice exhibited an increased oxidative metabolism. Global gene expression analysis revealed a high overlap between the effects of NCoR1 deletion and peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1alpha (PGC-1alpha) overexpression on oxidative metabolism in skeletal muscle. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
20 Samples
Download data: CEL
Series
Accession:
GSE40439
ID:
200040439
14.

Expression data from motor nerve-stimulated and the contralateral control tabialis anterior muscles in mice

(Submitter supplied) Exercise induces skeletal muscle adaptation, and the p38 mitogen-activated protein kinase signaling pathway is thought to play an important role in the adaptive processes. We have obtained new evidence that the gamma isoform of p38 is required for exercise-induced metabolic adaptation in skeletal muscle; however, the neuromuscular activity-dependent target genes of p38gamma remain to be defined. We used microarrays to detail the global programme of gene expression underlying the skeletal muscle genetic reprogramming in response to increased contractile activity and identified distinct classes of up-regulated genes during this process that are dependent on the functional activity of the p38gamma isoform.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL8321
14 Samples
Download data: CEL
Series
Accession:
GSE17620
ID:
200017620
15.

Hypomorphic Mutation in PGC1beta causes mitochondrial dysfunction and liver insulin resistance

(Submitter supplied) PGC1beta is a transcriptional coactivator that potently stimulates mitochondrial biogenesis and respiration of cells. Here, we have generated mice lacking exons 3 to 4 of the Pgc1beta gene (PGC1beta E3,4-/E3,4- mice). These mice express a mutant protein that has reduced coactivation activity on a subset of transcription factors, including ERRalpha, a major target of PGC1beta in the induction of mitochondrial gene expression. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Datasets:
GDS2515 GDS3197
Platform:
GPL1261
12 Samples
Download data: CEL
Series
Accession:
GSE6210
ID:
200006210
16.
Full record GDS3197

Transcriptional coactivator PGC-1beta hypomorphic mutation effect on the liver

Analysis of livers of animals bearing a hypomorphic PGC-1beta mutation. PGC-1beta is a transcriptional coactivator that stimulates mitochondrial biogenesis and respiration of cells. Results provide insight into the function of PGC-1beta in the liver.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE6210
6 Samples
Download data: CEL
17.
Full record GDS2515

Transcriptional coactivator PGC-1beta hypomorphic mutation effect on the skeletal muscle

Analysis of quadriceps muscles of animals bearing a hypomorphic PGC-1beta mutation. PGC-1beta is a transcriptional coactivator that stimulates mitochondrial biogenesis and respiration of cells. Results provide insight into the function of PGC-1beta in the skeletal muscle.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE6210
6 Samples
Download data: CEL
18.

Effects of a 8-week training on human skeletal muscle

(Submitter supplied) Context: Exercise training is a plausible model for identification of molecular mechanisms that cause metabolic-related changes in human skeletal muscle. Objective: The goal was to explore the molecular basis of the adaptation of skeletal muscle to exercise training. Design and Intervention: Obese male subjects were subjected to an individualized supervised training program targeted in order to optimize lipid oxidation during 8 weeks. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL16022
16 Samples
Download data: GPR
Series
Accession:
GSE40551
ID:
200040551
19.

PGC-1β Promotes Enterocyte Lifespan and Tumorigenesis in the Intestine

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
30 Samples
Download data
Series
Accession:
GSE61643
ID:
200061643
20.

Genome-wide analysis expression of ileum tumor samples from FVBN/APCmin and iPGC-1β/APCmin

(Submitter supplied) Analysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in intestinal tumors from APCmin mice overexpressing PGC-1β specifically in the intestine.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
12 Samples
Download data: TXT
Series
Accession:
GSE61642
ID:
200061642
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_60cd157053f7be207506f7d0|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center