U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Gene expression profile of HoxA9 over expressing and empty vector (EV) control Hemato-Endothelial Progenitors (HEPs) subpopulations

(Submitter supplied) During hematopoietic differentiation of hESCs, HOXA9 expression parallels hematopoietic development but is restricted to the hemogenic precursors (HEP, CD31+CD34+CD45-), and diminishes as HEPs differentiate into blood cells (CD45+). Enforced expression of Hoxa9 in hESCs robustly promoted differentiation into primitive (CD34+CD45+) and total (CD45+) blood cells with higher clonogenic (CFU) potential. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL13607
3 Samples
Download data: TXT
Series
Accession:
GSE61017
ID:
200061017
2.

FLT3 activation cooperates with MLL-AF4 fusion gene to abrogate the hematopoietic specification of human ESCs

(Submitter supplied) MLL-AF4 is a hallmark genomic aberration which arises prenatally in high-risk infant acute lymphoblastic leukemia (ALL). In human embryonic stem cells (hESCs), MLL-AF4 skewed hemato-endothelial specification but was not sufficient for transformation. Additional cooperating genetic insults seem required for MLL-AF4-mediated leukemogenesis. FLT3 is highly expressed in MLL-AF4+ ALL through activating mutations (FLT3-TKD or FLT3-ITD) or increased transcriptional expression, being therefore considered a potential cooperating event in MLL-AF4+ ALL. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL13607
18 Samples
Download data: TXT
Series
Accession:
GSE40103
ID:
200040103
3.

Gene expression profile of DLL4+ and DLL4- Hemato-Endothelial Progenitors (HEPs) subpopulations

(Submitter supplied) In hESCs, expression of the Notch ligand DLL4 parallels the emergence of bipotent hematoendothelial progenitors (HEPs) and promotes their hematopoietic differentiation. During differentiation, DLL4 is only expressed in a subpopulation of HEPs. To study the developmental fate of the two subpopulations of HEPs identified by DLL4 expression, we FACS-isolated DLL4high and DLL4low/- HEPs at day 15 of differentiation and performed gene expression analysis using microarrays
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL13607
4 Samples
Download data: TXT
Series
Accession:
GSE56881
ID:
200056881
4.

Geminin regulates self-renewal and fate commitment decisions in fetal hematopoietic stem cells.

(Submitter supplied) Conditional deletion of Geminin from the entire hematopoietic compartment using Vav1:iCre mice led to defective hematopoiesis/dyserythropoiesis in E15.5 mouse embryos. The present data set includes data from lineage-negative cells isolated from homogenized livers that were dissected from E15.5.dpc embryos. The two conditions compared were wild-type versus Geminin-KO Lin- cells. The cells were collected from littermates.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
6 Samples
Download data: CEL
Series
Accession:
GSE53056
ID:
200053056
5.

Maintenance of hESCs in mesenchymal stem cell-conditioned media augments hematopoietic specification

(Submitter supplied) The realization of human embryonic stem cells (hESC) as a model for human developmental hematopoiesis and potential cell replacement strategies relies on an improved understanding of the extrinsic and intrinsic factors regulating hematopoietic-specific hESC differentiation. Mesenchymal stem cells (hMSCs) are multipotent cells of mesodermal origin that form part of hematopoietic stem cell niches and have an important role in the regulation of hematopoiesis through production of secreted factors and/or cell-to-cell interactions. more...
Organism:
Homo sapiens
Type:
Methylation profiling by array
Platform:
GPL8490
6 Samples
Download data: TXT
Series
Accession:
GSE30456
ID:
200030456
6.

Critical role of SOX17 in the hematopoietic development from human embryonic stem cells

(Submitter supplied) Human embryonic stem cells (hESCs) are a powerful tool for modeling regenerative therapy. To search for the genes that promote hematopoietic development from human pluripotent stem cell, we overexpressed a list of hematopoietic regulator genes in human pluripotent stem cell-derived CD34+CD43- endothelial cells (ECs) enriched in hemogenic endothelium. Among genes tested, only SOX17, a gene encoding a transcription factor of the SOX family, promoted cell growth and supported expansion of CD34+CD43+CD45-/low cells expressing a hemogenic endothelial maker VE-cadherin. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by genome tiling array; Expression profiling by array
Platforms:
GPL14622 GPL6244
19 Samples
Download data: CEL, TXT
Series
Accession:
GSE38156
ID:
200038156
7.

ChIP-on-chip data from human ES cells-derived CD34+CD43+CD45low cells (hemogenic endothelium-like cells) overexpressing 3xFLAG-Sox17-ERT

(Submitter supplied) Overexpression of transcription factor Sox17 in human ES cells-derived endothelial cells enhances expansion of hemogenic endothelium-like cells.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL14622
1 Sample
Download data: TXT
Series
Accession:
GSE37528
ID:
200037528
8.

Expression data of human ES cells-derived CD34+CD43+CD45low cells (hemogenic endothelium-like cells) expanded upon overexpression of Sox17

(Submitter supplied) Overexpression of transcription factor Sox17 in human ES cells-derived endothelial cells and hematopoietic cells enhances expansion of hemogenic endothelium-like cells.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6244
18 Samples
Download data: CEL
Series
Accession:
GSE37348
ID:
200037348
9.

Medial HOXA gene expression is a landmark for the definitive haematopoietic fate and a prerequisite for human HSC function

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL11154 GPL570
42 Samples
Download data: BW, CEL
Series
Accession:
GSE76685
ID:
200076685
10.

RNA-seq expression data from EB-HSPCs after HOXA7 overexpression

(Submitter supplied) HOXA7 regulates FL-HSPC self-renewal in vitro and in vivo. We profiled EB-HSPCs after HOXA7 overexpression (EB-HOXA7), or with a control vector (EB-CTR), to assess the gene expression programs regulated by HOXA7.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
2 Samples
Download data: BW
11.

RNA-seq expression data from FL-HSPCs after HOXA7 knockdown

(Submitter supplied) HOXA7 regulates FL-HSPC self-renewal in vitro and in vivo. We profiled FL-HSPCs after HOXA7 knockdown, to assess the gene expression programs regulated by HOXA7.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
8 Samples
Download data: DIFF
12.

RNA-seq expression data from EB-HSPC after AM580 treatment compated to DMSO-trated and FL-HSPCs

(Submitter supplied) RA signalling regulated endothelial to hematopoietic transition and HSC generation.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
14 Samples
Download data: BW, DIFF
13.

ATAC-seq data from EB-HSPC after AM580 treatment compared to DMSO-treated EB

(Submitter supplied) RA signalling regulated endothelial to hematopoietic transition and HSC generation.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
4 Samples
Download data: BW
Series
Accession:
GSE76681
ID:
200076681
14.

Expression data from immunophenotypic HSPCs isolated from different stages of human hematopoiesis, in vivo and in vitro

(Submitter supplied) The derivation of functional, transplantable HSCs from an pluripotent stem cells in vitro holds great promise for clinical therapies, but is unachieved. In order to achieve full functionality of HSCs, it is vital to determine the extent to which PSCs can currently be differentiated to the HSC program in vitro and identify the remaining dysregulated genetic pathways. Microarrays were used to compare the transcritomes of ESC-derived immunophenotypic HSPCs to endogenous HSPCs from various stages of development to determine the programs important for human HSC development and function, and which programs were lacking in ESC-derived hematopoietic cells.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
14 Samples
Download data: CEL
Series
Accession:
GSE64865
ID:
200064865
15.

RNA Sequencing Facilitates Quantitative Analysis of Wild Type and MEIS2 deleted H1 drived cells at day4 of hematopoietic differentiation.

(Submitter supplied) Purpose: The goals of this study are to investigate the molecular mechanism by which MEIS2 controls HEP specification and EHT through compareing the mRNA profiling of Wild Type and MEIS2 deleted H1 drived cells at day4 of hematopoietic differentiation. Methods: mRNA profiles of Wild Type and MEIS2 deleted H1 drived cells at day4 of hematopoietic differentiation were generated by deep sequencing using Illumina GAIIx. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL10999
2 Samples
Download data: TXT
16.

Efficient hematopoietic redifferentiation of induced pluripotent stem cells derived from primitive murine bone marrow cells

(Submitter supplied) Heterogeneity among iPSC lines with regard to their gene expression profile and differentiation potential has been described and has been at least partly linked to the tissue of origin. We generated iPSCs from primitive (linneg) and non-adherent differentiated (linpos) bone marrow cells (BM-iPSC), and compared their differentiation potential to that of fibroblast-derived iPSCs (Fib-iPSC) and ESCs. In the undifferentiated state, individual iPSC clones but also ESCs proved remarkably similar when analyzed for alkaline phosphatase and SSEA-1 staining, endogenous expression of the pluripotency genes Nanog, Oct4, and Sox2, or global gene expression profiles. However, substantial differences between iPSC clones were observed after induction of differentiation, which became most obvious upon cytokine-mediated instruction towards the hematopoietic lineage. All three BM-iPSC lines derived from undifferentiated cells yielded high proportions of cells expressing the hematopoietic differentiation marker CD41, and in two of these lines, high proportions of CD41+/CD45+ cells were detected. In contrast, little hematopoiesis-specific surface marker expression was detected in linpos BM-iPSC and FIB-iPSC lines. These results were corroborated by functional studies demonstrating robust colony outgrowth from hematopoietic progenitors in two of the linneg BM-iPSCs only. Thus, in summary our data demonstrate efficient generation of iPSCs from primitive hematopoietic tissue as well as efficient hematopoietic redifferentiation for linneg BM-iPSC lines, thereby further supporting the notion of an epigenetic memory in iPSCs. Murine embryonic fibroblasts (MEFs) from C3H mice were cultured in low-glucose DMEM supplemented with 10% heat-inactivated fetal calf serum gold (PAA, Pasching, Austria), penicillin-streptomycin, 1 mM L-glutamine and 0.05 mM beta-mercaptoethanol on gelatine-coated dishes. C3H MEFs were grown to confluence, inactivated with 10 ug/ml Mitomycin C (Sigma) and used as feeder layers. Virus production was performed in a four plasmid-manner. Briefly, 3.5x10^6 293T cells were seeded 24h prior to transfection in 10 cm dishes. 293T cells were cultivated in high-glucose DMEM (Gibco) supplemented with 10% heat-inactivated FCS, penicillin-streptomycin and 1 mM L-glutamine. Cells were transfected with 5 ug lentiviral vector, 8 ug pcDNA3.GP.4xCTE (expressing HIV-1 gag/pol), 5 ug pRSV-Rev and 2 ug pMD.G (encoding the VSV glycoprotein) using the calcium phosphate method in the presence of HEPES and chloroquine. Supernatants were harvested 48h and 72h after transfection, filtered and subsequently 50x concentrated by ultracentrifugation. Titers determined based on real-time PCR, were in the range of 1-5x10^7/ml. For iPSC generation, bone marrow cells were isolated from femurs and tibias of Oct4-GFP transgenic mice (OG2) and immunomagnetically separated into lineage negative (Lin-) and lineage positive (Lin+) populations using the mouse lineage depletion kit (Miltenyi Biotec). Lin- cells were cultivated in serum-free StemSpan medium (Stem Cell Technology) supplemented with 2 mM L-glutamine, penicillin-streptomycin, 10 ng/ml mSCF, 20 ng/ml mTPO, 20 ng/ml, 20 ng/ml IGF-2 and 10 ng/ml FGF-1 (all Peprotech). Lin+ cells were cultivated in Iscove's modified eagle medium (IMDM), supplemented with 15% heat-inactivated FCS, 1 mM L-glutamine, penicillin-streptomycin, 100 ng/ml mSCF, 100 ng/ml mFLT3-L, 10 ng/ml hIL-3 and 100 ng/ml hIL-11. Both Lin- and Lin+ cells were pre-stimulated in the aforementioned media for 48 h. Thereafter, 2x10^5 Lin- and and Lin+ bone marrow cells were transduced on Retronection-coated plates (Takara) with lentiviral vectors encoding for human Oct4, Sox2, Klf4 and c-Myc using a multiplicity of infection (MOI) of 50 per virus. Twenty-four hours after transduction, media were supplemented with 2 mM valproic acid. Transduced bone marrow cells were kept in hematopoietic medium until 5 or 7 days post transduction (p.t.) and then transferred onto Mitomycin C-treated MEF feeders on gelatine-coated dishes. Henceforward, cells were cultivated in ES cell medium (knockout DMEM (Gibco), 15% ES-tested FCS, 1 mM L-glutamine, 0.1 mM non-essential amino acids (Gibco), 100 uM beta-mercaptoethanol (Sigma), penicillin-streptomycin and 103 units/ml leukemia inhibitory factor (LIF, provided by the Max-Planck-Institute, Munster, Germany). Upon appearance of GFP-positive ESC-like colonies, single colonies were picked based on morphology and GFP expression. Murine ESCs and iPSCs were cultured on Mitomycin C-treated MEF feeders in the aforementioned ES medium. Murine ESCs and iPSCs were passaged every 2-3 days. The murine embryonic fibroblast-derived iPSC lines (MEF-iPS, 3FLV2, 4FLV1) were generated by transduction of OG2-MEFs with the same lentiviral vector constructs using standard technology. For iPSC lines 3FLV2 and 4FLV1, complete reprogramming was demonstrated by alkaline phosphatase and SSEA1-staining, pluripotency factor expression and teratoma formation.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
7 Samples
Download data: TXT
Series
Accession:
GSE29635
ID:
200029635
17.

microRNA profiles of hematopoietic derivatives

(Submitter supplied) Hematopoietic stem cells (HSCs) can regenerate the entire hematopoietic system in vivo, providing the most relevant criteria to measure candidate HSCs derived from human embryonic stem cell (hESC) or induced pluripotent stem cell (hiPSC) sources. Here, we show that unlike primitive hematopoietic cells derived from hESCs, phenotypically identical cells derived from hiPSC are more permissive to graft the bone marrow of xenotransplantation recipients. more...
Organism:
Homo sapiens
Type:
Expression profiling by RT-PCR
Platform:
GPL9460
13 Samples
Download data: TXT
Series
Accession:
GSE35923
ID:
200035923
18.

Molecular Events Initiating B Cell Fate Specification

(Submitter supplied) Functional genomics comparison of EBFko, Pax5ko, and RAG2ko cell lines. Identify gene signatures associated with specfication and commitment to the B cell fate.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
9 Samples
Download data: CEL, CHP, XLS
Series
Accession:
GSE16002
ID:
200016002
19.

Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
35 Samples
Download data
Series
Accession:
GSE81102
ID:
200081102
20.

Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros

(Submitter supplied) The production of definitive haematopoietic stem/progenitor cells from human pluripotent stem cells (hPSCs) remains a significant challenge. Using reporter lines to track the endothelial (SOX17) to haematopoietic (RUNX1C) transition, we found that hPSC differentiated in growth factor supplemented serum free medium generated RUNX1C+CD34+ clonogenic cells that homed to the bone marrow, but did not engraft. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
9 Samples
Download data: TXT
Series
Accession:
GSE81080
ID:
200081080
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_66285619f4364867151e563d|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center