U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Analysis of gene expression and of H3.3 distribution and abundance in a ATRX loss-of-function line

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Arabidopsis thaliana
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL9062 GPL17639
11 Samples
Download data
Series
Accession:
GSE87918
ID:
200087918
2.

Analysis of eH3.3 occupancy in a ATRX loss-of-function line [ChIP-seq]

(Submitter supplied) Analysis of H3.3 position and abundance in the presence and absence of a functionnal ATRX protein: we wanted to analyse how the absence of the Arabidopsis putative ATRX chaperone would impact the abundance and the distribution of H3.3 variant at a genome-wide level.
Organism:
Arabidopsis thaliana
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9062
5 Samples
Download data: WIG, XLS
Series
Accession:
GSE87917
ID:
200087917
3.

Analysis of gene expression in a ATRX loss-of-function line [RNA-seq]

(Submitter supplied) Comparison between WT and atrx-1 mutant of genome expression to analyse the impact of loss of the ATRX chaperone
Organism:
Arabidopsis thaliana
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17639
6 Samples
Download data: XLSX
Series
Accession:
GSE87916
ID:
200087916
4.

LHP1 interacts with ATRX through plant-specific domains at specific loci targeted by PRC2

(Submitter supplied) Heterochromatin Protein 1 (HP1) is a major regulator of chromatin structure and function. In animals, the network of proteins interacting with HP1 is mainly associated with constitutive heterochromatin marked by H3K9me3. HP1 physically interacts with the putative orthologue of the SNF2 chromatin remodeler ATRX, which controls deposition of the histone variant H3.3 in mammals. In Arabidopsis thaliana, we show that the orthologue of ATRX participates in H3.3 deposition and characterize the function of conserved domains of plant ATRX. more...
Organism:
Arabidopsis thaliana
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17639
12 Samples
Download data: TSV
Series
Accession:
GSE101777
ID:
200101777
5.

Histone chaperone ASF1 mediates H3.3-H4 deposition in Arabidopsis

(Submitter supplied) Histone chaperones and chromatin remodelers control nucleosome dynamics, which are essential for transcription, replication, and DNA repair. The histone chaperone Anti-Silencing Factor 1 (ASF1) plays a central role in facilitating CAF-1-mediated replication-dependent H3.1 deposition and HIRA-mediated replication-independent H3.3 deposition in yeast and metazoans. Whether ASF1 function is evolutionarily conserved in plants is unknown. more...
Organism:
Arabidopsis thaliana
Type:
Expression profiling by high throughput sequencing; Other; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platform:
GPL21785
101 Samples
Download data: BW, NARROWPEAK, RESULTS, TXT, WIG
Series
Accession:
GSE188493
ID:
200188493
6.

PML protein organizes heterochromatin domains where it regulates histone H3.3 deposition by ATRX/DAXX

(Submitter supplied) Maintenance of chromatin homeostasis involves proper delivery of histone variants to the genome. The interplay between different chaperones regulating the supply of histone variants to distinct chromatin domains remains largely undeciphered. We report a role of promyelocytic leukemia (PML) protein in the routing of histone variant H3.3 to chromatin and in the organization of megabase-size heterochromatic PML-associated domains that we call PADs. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL17021 GPL19057
20 Samples
Download data: BED, BW, CSV
Series
Accession:
GSE66364
ID:
200066364
7.

Plant-specific histone residue F41 restricts H3.1 distribution in heterochromatin

(Submitter supplied) The plant specific H3.1F41 plays crucial role in H3.1 genome-wide deposition pattern.
Organism:
Arabidopsis thaliana
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13222
11 Samples
Download data: BW
Series
Accession:
GSE93223
ID:
200093223
8.

H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements

(Submitter supplied) Histone chaperones prevent promiscuous histone interactions before chromatin assembly. They guarantee faithful deposition of canonical histones and functionally specialized histone variants into chromatin in a spatial- and temporally-restricted manner. Here, we identify the binding partners of the primate-specific and H3.3-related histone variant H3.Y using several quantitative mass spectrometry approaches, and biochemical and cell biological assays. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
13 Samples
Download data: BED, BW
Series
Accession:
GSE94034
ID:
200094034
9.

NRP histone chaperones promote the removal of histone variant H2A.Z

(Submitter supplied) In eukaryotes, DNA wraps around histones to form nucleosomes, which are compacted into chromatin. DNA-templated processes, including transcription, require chromatin disassembly and reassembly mediated by histone chaperones. Additionally, distinct histone variants can replace core histones to regulate chromatin structure and function. Although replacement of H2A with the evolutionarily conserved H2A.Z via the SWR1 histone chaperone complex has been extensively studied, in plants little is known about how a reduction of H2A.Z levels can be achieved in plants. more...
Organism:
Arabidopsis thaliana
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platform:
GPL21785
54 Samples
Download data: BROADPEAK, BW, NARROWPEAK, TXT, WIG
Series
Accession:
GSE127986
ID:
200127986
10.

A jumonji protein with E3 ligase and histone binding activities regulates transposon silencing in Arabidopsis

(Submitter supplied) Transposable elements (TEs) make up a large proportion of eukaryotic genomes. As their mobilization creates genetic variation that threatens genome integrity, TEs are epigenetically silenced through several pathways and this may spread to neighboring sequences. JUMONJI (JMJ) proteins can function as anti-silencing factors and prevent silencing of genes next to TEs. Whether TE silencing is counterbalanced by the activity of anti-silencing factors is still unclear. more...
Organism:
Arabidopsis thaliana
Type:
Expression profiling by array
Platform:
GPL198
9 Samples
Download data: CEL
Series
Accession:
GSE72954
ID:
200072954
11.

LCL Bio-CAP-seq

(Submitter supplied) The chromatin remodeller ATRX interacts with the histone chaperone DAXX, to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
8 Samples
Download data: BED, BW
Series
Accession:
GSE193315
ID:
200193315
12.

LCL Capture-C

(Submitter supplied) The chromatin remodeller ATRX interacts with the histone chaperone DAXX, to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. more...
Organism:
Homo sapiens
Type:
Other
Platform:
GPL18573
6 Samples
Download data: TAB, TXT
Series
Accession:
GSE193314
ID:
200193314
13.

LCL ATAC-seq

(Submitter supplied) The chromatin remodeller ATRX interacts with the histone chaperone DAXX, to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
12 Samples
Download data: BED, BW
Series
Accession:
GSE193312
ID:
200193312
14.

Single step cross-linking LCL ChIP-seq

(Submitter supplied) The chromatin remodeller ATRX interacts with the histone chaperone DAXX, to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
47 Samples
Download data: BW
Series
Accession:
GSE193311
ID:
200193311
15.

Two steps cross-linking LCL ChIP-seq

(Submitter supplied) The chromatin remodeller ATRX interacts with the histone chaperone DAXX, to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
16 Samples
Download data: BED, BW
Series
Accession:
GSE193310
ID:
200193310
16.

Erythroblasts

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other; Expression profiling by high throughput sequencing
Platform:
GPL18573
44 Samples
Download data: BED, BW, CSV, H5, TAB, TSV
Series
Accession:
GSE193038
ID:
200193038
17.

single cell RNA-seq

(Submitter supplied) The chromatin remodeller ATRX interacts with the histone chaperone DAXX, to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
2 Samples
Download data: H5
Series
Accession:
GSE193037
ID:
200193037
18.

single cell ATAC-seq

(Submitter supplied) The chromatin remodeller ATRX interacts with the histone chaperone DAXX, to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
4 Samples
Download data: BED, CSV, TSV
Series
Accession:
GSE193035
ID:
200193035
19.

single step cross-linking ChIP-seq

(Submitter supplied) The chromatin remodeller ATRX interacts with the histone chaperone DAXX, to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
15 Samples
Download data: BW
Series
Accession:
GSE193034
ID:
200193034
20.

two steps cross-linking ChIP-seq

(Submitter supplied) The chromatin remodeller ATRX interacts with the histone chaperone DAXX, to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
11 Samples
Download data: BED, BW
Series
Accession:
GSE193033
ID:
200193033
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_6628aab8862bea0a3f926bb4|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center