Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

A map of the PGC-1α- and NT-PGC-1α-regulated transcriptional network in brown adipose tissue [SAGE]

(Submitter supplied) Transcriptional coactivator PGC-1α and its splice variant NT-PGC-1α play crucial roles in regulating cold-induced thermogenesis in brown adipose tissue (BAT). PGC-1α and NT-PGC-1α are highly induced by cold in BAT and subsequently bind to and coactivate many different transcription factors to regulate expression of genes involved in mitochondrial biogenesis, fatty acid oxidation, respiration and thermogenesis. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL15907
12 Samples
Download data: TXT
Series
Accession:
GSE110055
ID:
200110055
2.

A map of the PGC-1α- and NT-PGC-1α-regulated transcriptional network in brown adipose tissue

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL15907
16 Samples
Download data
Series
Accession:
GSE110056
ID:
200110056
3.

A map of the PGC-1α- and NT-PGC-1α-regulated transcriptional network in brown adipose tissue [ChIP-Seq]

(Submitter supplied) Transcriptional coactivator PGC-1α and its splice variant NT-PGC-1α play crucial roles in regulating cold-induced thermogenesis in brown adipose tissue (BAT). PGC-1α and NT-PGC-1α are highly induced by cold in BAT and subsequently bind to and coactivate many different transcription factors to regulate expression of genes involved in mitochondrial biogenesis, fatty acid oxidation, respiration and thermogenesis. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL15907
4 Samples
Download data: BEDGRAPH
Series
Accession:
GSE110053
ID:
200110053
4.

Remodeling of Brown and White Adipose Tissue by NT-PGC-1α-Mediated Gene Regulation

(Submitter supplied) The β-adrenergic receptor signaling pathway is a major component of adaptive thermogenesis in brown and white adipose tissue during cold acclimation. The β-AR activation highly induces transcriptional coactivator PGC-1α and its splice variant N-terminal (NT)-PGC-1α, promoting the transcription program of mitochondrial biogenesis and thermogenesis. In the present study, we evaluated the role of NT-PGC-1α in brown adipocyte energy metabolism by genome-wide profiling of NT-PGC-1α-responsive genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL2995
4 Samples
Download data: TXT
Series
Accession:
GSE71774
ID:
200071774
5.

Peroxisome proliferator-activated receptor gamma coactivator-1alpha isoforms selectively regulate multiple splicing events on target genes.

(Submitter supplied) Endurance and resistance exercise training induce specific and profound changes in the skeletal muscle transcriptome. PGC-1a; coactivators are not only among the genes differentially induced by distinct training methods, but also participate in the ensuing signaling cascades that allow skeletal muscle to adapt to each type of exercise. While endurance training preferentially induces PGC-1a1 expression, resistance exercise activates the expression of PGC-1a2, a3, and a4. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6096
15 Samples
Download data: CEL
Series
Accession:
GSE75448
ID:
200075448
6.

Histone Deacetylase 3 Prepares Brown Adipose Tissue For Acute Thermogenic Challenge

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other; Expression profiling by high throughput sequencing
Platforms:
GPL17021 GPL19057 GPL13112
21 Samples
Download data: BW
Series
Accession:
GSE83928
ID:
200083928
7.

Histone Deacetylase 3 Prepares Brown Adipose Tissue For Acute Thermogenic Challenge [RNA-Seq]

(Submitter supplied) Brown adipose tissue (BAT) is a thermogenic organ that requires Uncoupling Protein 1 (UCP1) to dissipate chemical energy as heat, to defend core body temperature against hypothermia, and counteract obesity and metabolic diseases1. However, the transcriptional mechanism ensuring BAT thermogenic capacity for survival prior to environmental cold is unknown. Here we show histone deacetylase 3 (HDAC3) is a required transcriptional regulator of BAT enhancers to ensure thermogenic aptitude and survival. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
8 Samples
Download data: XLSX
Series
Accession:
GSE83927
ID:
200083927
8.

Histone Deacetylase 3 Prepares Brown Adipose Tissue For Acute Thermogenic Challenge [ChIP-Seq, GRO-Seq]

(Submitter supplied) Brown adipose tissue (BAT) is a thermogenic organ that requires Uncoupling Protein 1 (UCP1) to dissipate chemical energy as heat, to defend core body temperature against hypothermia, and counteract obesity and metabolic diseases1. However, the transcriptional mechanism ensuring BAT thermogenic capacity for survival prior to environmental cold is unknown. Here we show histone deacetylase 3 (HDAC3) is a required transcriptional regulator of BAT enhancers to ensure thermogenic aptitude and survival. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other
Platforms:
GPL13112 GPL17021 GPL19057
15 Samples
Download data: BW
9.

Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation

(Submitter supplied) Mitochondria play an essential role in the ability of brown fat to generate heat, and the PGC-1 coactivators control several aspects of mitochondrial biogenesis. To investigate their specific roles in brown fat cells, we generated immortal preadipocyte lines from the brown adipose tissue of mice lacking PGC-1α. We could then efficiently knockdown PGC-1β expression by shRNA expression. Loss of PGC-1α did not alter brown fat differentiation but severely reduced the induction of thermogenic genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2123
Platform:
GPL1261
6 Samples
Download data
Series
Accession:
GSE5042
ID:
200005042
10.

Expression of the brown fat thermogenic gene program requires PGC-1alpha

(Submitter supplied) To investigate the specific role of PGC-1 coactivators in brown fat cells, we generated immortal preadipocyte lines from the brown adipose tissue of mice lacking PGC-1alpha. We could then efficiently knockdown PGC-1beta expression by shRNA expression. Loss of PGC-1alpha did not alter brown fat differentiation but severly reduced the induction of thermogenic genes. In order to assess the specific requirement for PGC-1α in the global transcriptional response to cAMP, we used Affymetrix arrays to compare the sets of genes induced in response to a 4 hr dbcAMP treatment in differentiated wt and KO cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS2149
Platform:
GPL1261
8 Samples
Download data
Series
Accession:
GSE5041
ID:
200005041
11.
Full record GDS2149

PGC-1alpha null brown adipocyte response to cAMP

Analysis of PGC-1alpha null brown adipocytes treated with cAMP for 4 hours. PGC-1alpha is required for the thermogenic function of brown fat cells, and cAMP plays a role in thermogenesis. Results provide insight into the role of PGC-1alpha in the global transcriptional response to cAMP.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 agent, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE5041
8 Samples
Download data
DataSet
Accession:
GDS2149
ID:
2149
12.
Full record GDS2123

Brown fat cell response to PGC-1alpha and PGC-1beta deficiency

Analysis of brown fat cells lacking PGC-1alpha or both PGC-1alpha and PGC-1beta. PGC-1alpha is required for the thermogenic function of brown fat cells, and PGC-1beta is the closest homolog of PGC-1alpha. Results provide insight into the specific roles of PGC-1alpha and PGC-1beta in brown fat cells.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 3 agent, 2 genotype/variation sets
Platform:
GPL1261
Series:
GSE5042
6 Samples
Download data
DataSet
Accession:
GDS2123
ID:
2123
13.

ALS-causing mutations differentially affect PGC-1alpha expression and function in the brain vs. peripheral tissues

(Submitter supplied) Amyotrophic later sclerosis is a motor neuron disease accompanied by metabolic changes. PGC (PPAR gamma coactivator)-1alpha is a master regulator of mitochondrial biogenesis and function and of critical importance for all metabolically active tissues. PGC-1alpha is a genetic modifier of ALS. We used microarray analysis to identify PGC-1alpha target genes in the brain.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE77919
ID:
200077919
14.

Effects of Peroxisome proliferator-γ coactivator-1α (PGC-1a) isoform over-expression +/- TNFalpha on hepatocyte gene expression

(Submitter supplied) PGC-1a is a transcriptional coactivator known to regulate a broad gene program of nutrient and mitochondrial metabolism. Many splice variants of this protein have been identified, but their functions were unknown. This experiment was designed to delineate the downstream targets of two different PGC-1alpha isoforms (PGC-1a1 and PGC-1a4) in hepatocytes, and to determine whether inflammatory signaling (via TNFR activation) modulated these targets Liver is exposed to constantly changing metabolic and inflammatory environments. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
18 Samples
Download data: CEL, CHP
Series
Accession:
GSE132458
ID:
200132458
15.

The Peroxisome Proliferator-Activated Receptor α is dispensable for cold-induced adipose tissue browning in mice

(Submitter supplied) Chronic cold exposure causes white adipose tissue (WAT) to adopt features of brown adipose tissue, a process known as browning. Previous studies have hinted at a possible role for the transcription factor Peroxisome Proliferator-Activated Receptor alpha (PPARα) in cold-induced browning. Here we aimed to investigate the importance of PPARα in driving transcriptional changes during cold-induced browning in mice. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL17400
22 Samples
Download data: CEL
Series
Accession:
GSE110420
ID:
200110420
16.

Analysis of PGC-1alpha overexpression effects on the whole transcriptome in cultured skeletal muscle cells

(Submitter supplied) The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of the mitochondrial and metatolic program in skeletal muscle (skm) and prevents atrophy. Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of cultured human skeletal myotubes, which display an athropic phenotype. An oligonucleotide microarray analysis was used to reveal PGC-1α effects on the whole transcriptome, and the possible impact on fuel metabolism reprogramming was examined. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL6884
6 Samples
Download data: TXT
Series
Accession:
GSE28206
ID:
200028206
17.

Transcriptional coactivator PGC-1α contains a novel CBP80-binding motif that orchestrates efficient target gene expression

(Submitter supplied) This RNA-seq dataset was generated to identify genes whose transcription relies on the CBP80-binding motif (CBM) of PGC-1α in C2C12 mouse myoblasts.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
12 Samples
Download data: TXT
Series
Accession:
GSE103566
ID:
200103566
18.

Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL10740 GPL11002 GPL9250
20 Samples
Download data: CEL
Series
Accession:
GSE51191
ID:
200051191
19.

Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program [microarray: kD_AP1]

(Submitter supplied) Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10740
10 Samples
Download data: CEL, TXT
Series
Accession:
GSE51190
ID:
200051190
20.

Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program [microarray: PGC1a_vs_GFP]

(Submitter supplied) Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10740
6 Samples
Download data: CEL, TXT
Series
Accession:
GSE51189
ID:
200051189
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_61495fcb9fba694c431c6d10|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center