U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Differential chromatin binding of the lung lineage transcription factor NKX2-1 resolves opposing murine alveolar cell fates in vivo [ChIP-seq]

(Submitter supplied) Differential use of identical DNA sequences leads to distinct tissue lineages and then multiple cell types within a lineage, an epigenetic process central to progenitor and stem cell biology. The associated genomic changes, especially in native tissues, remain insufficiently understood, and are hereby addressed in the mouse lung, where the same lineage transcription factor NKX2-1 promotes the diametrically opposed alveolar type 1 (AT1) versus AT2 cell fate. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
54 Samples
Download data: BEDGRAPH, BROADPEAK, NARROWPEAK
Series
Accession:
GSE158201
ID:
200158201
2.

Differential chromatin binding of the lung lineage transcription factor NKX2-1 resolves opposing murine alveolar cell fates in vivo

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19057 GPL24247
78 Samples
Download data: BED, BEDGRAPH, BROADPEAK, CLOUPE, CSV, H5, NARROWPEAK, TBI, TSV
Series
Accession:
GSE158205
ID:
200158205
3.

Differential chromatin binding of the lung lineage transcription factor NKX2-1 resolves opposing murine alveolar cell fates in vivo [scATAC-Seq]

(Submitter supplied) Differential use of identical DNA sequences leads to distinct tissue lineages and then multiple cell types within a lineage, an epigenetic process central to progenitor and stem cell biology. The associated genomic changes, especially in native tissues, remain insufficiently understood, and are hereby addressed in the mouse lung, where the same lineage transcription factor NKX2-1 promotes the diametrically opposed alveolar type 1 (AT1) versus AT2 cell fate. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24247
1 Sample
Download data: BED, BEDGRAPH, BROADPEAK, CLOUPE, CSV, H5, TBI, TSV
Series
Accession:
GSE158196
ID:
200158196
4.

Differential chromatin binding of the lung lineage transcription factor NKX2-1 resolves opposing murine alveolar cell fates in vivo [scRNA-Seq]

(Submitter supplied) Differential use of identical DNA sequences leads to distinct tissue lineages and then multiple cell types within a lineage, an epigenetic process central to progenitor and stem cell biology. The associated genomic changes, especially in native tissues, remain insufficiently understood, and are hereby addressed in the mouse lung, where the same lineage transcription factor NKX2-1 promotes the diametrically opposed alveolar type 1 (AT1) versus AT2 cell fate. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
14 Samples
Download data: CLOUPE, MTX, TSV
Series
Accession:
GSE158192
ID:
200158192
5.

Differential chromatin binding of the lung lineage transcription factor NKX2-1 resolves opposing murine alveolar cell fates in vivo [ATAC-seq]

(Submitter supplied) Differential use of identical DNA sequences leads to distinct tissue lineages and then multiple cell types within a lineage, an epigenetic process central to progenitor and stem cell biology. The associated genomic changes, especially in native tissues, remain insufficiently understood, and are hereby addressed in the mouse lung, where the same lineage transcription factor NKX2-1 promotes the diametrically opposed alveolar type 1 (AT1) versus AT2 cell fate. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
9 Samples
Download data: BEDGRAPH, BROADPEAK
Series
Accession:
GSE158024
ID:
200158024
6.

Transcriptional control of lung alveolar type 1 cell development and maintenance by NK Homeobox 2-1

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
21 Samples
Download data: CLOUPE, MTX, TSV, TXT
Series
Accession:
GSE129628
ID:
200129628
7.

Transcriptional control of lung alveolar type 1 cell development and maintenance by NK Homeobox 2-1 [ChIP-Seq]

(Submitter supplied) The extraordinarily thin alveolar type 1 (AT1) cell constitutes nearly the entire gas exchange surface and allows passive diffusion of oxygen into the blood stream. Despite such an essential role, the transcriptional network controlling AT1 cells remains unclear. Using cell-specific knockout mouse models, genomic profiling, and three-dimensional imaging, we found that NK Homeobox 2-1 (NKX2-1) is expressed in AT1 cells and is required for the development and maintenance of AT1 cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
5 Samples
Download data: BW, TXT
Series
Accession:
GSE129627
ID:
200129627
8.

Transcriptional control of lung alveolar type 1 cell development and maintenance by NK Homeobox 2-1 [scRNA-Seq]

(Submitter supplied) The extraordinarily thin alveolar type 1 (AT1) cell constitutes nearly the entire gas exchange surface and allows passive diffusion of oxygen into the blood stream. Despite such an essential role, the transcriptional network controlling AT1 cells remains unclear. Using cell-specific knockout mouse models, genomic profiling, and three-dimensional imaging, we found that NK Homeobox 2-1 (NKX2-1) is expressed in AT1 cells and is required for the development and maintenance of AT1 cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
2 Samples
Download data: CLOUPE, MTX, TSV
Series
Accession:
GSE129584
ID:
200129584
9.

Transcriptional control of lung alveolar type 1 cell development and maintenance by NK Homeobox 2-1 [RNA-Seq]

(Submitter supplied) The extraordinarily thin alveolar type 1 (AT1) cell constitutes nearly the entire gas exchange surface and allows passive diffusion of oxygen into the blood stream. Despite such an essential role, the transcriptional network controlling AT1 cells remains unclear. Using cell-specific knockout mouse models, genomic profiling, and three-dimensional imaging, we found that NK Homeobox 2-1 (NKX2-1) is expressed in AT1 cells and is required for the development and maintenance of AT1 cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
14 Samples
Download data: XLSX
Series
Accession:
GSE129583
ID:
200129583
10.

Klf5 promotes alveolar epithelial type 1 cell lineage commitment during lung development and regeneration

(Submitter supplied) Alveolar epithelial cell fate decisions drive lung development and regeneration. Using transcriptomic and epigenetic profiling coupled with genetic mouse and organoid models, we identified Klf5 as a critical regulator of alveolar epithelial cell fate across the lifespan. During prenatal lung development and alveologenesis, Klf5 enforces alveolar epithelial type 1 (AT1) cell lineage fidelity. While it is dispensable for both adult AT1 and alveolar epithelial type 2 (AT2) cell homeostasis, Klf5 regulates AT2 cell plasticity after injury. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
9 Samples
Download data: CSV
Series
Accession:
GSE190676
ID:
200190676
11.

An epigenetic basis for lateral inhibition and lineage plasticity in intestinal differentiation

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL8321 GPL13112
25 Samples
Download data: BED, BW, CEL
Series
Accession:
GSE51464
ID:
200051464
12.

Analyses of the chromatin and transcriptional basis for lateral inhibition in isolated intestinal epithelial cells.

(Submitter supplied) We analyzed chromatin modifications, DNaseI-hypersensitive sites, and occupancy of a key secretory-lineage transcription factor, ATOH1. We found that lateral inhibition in the intestine occurs through ATOH1 exerting direct control within a broadly permissive chromatin state that is established in stem cells and is highly similar in specified progenitors of divergent potential.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
15 Samples
Download data: BED, BW
Series
Accession:
GSE51458
ID:
200051458
13.

Gene expression in intestinal epithelial crypt and villus cell populations

(Submitter supplied) We analyzed gene expression profiles in isolated mouse LGR5+ intestinal stem cells, lineage-specific enterocyte and secretory progenitors, and terminally differentiated villus enterocytes. Gene Ontology analyses of cell type-specific transcripts indicated their expected biological functions.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL8321
10 Samples
Download data: CEL
Series
Accession:
GSE51398
ID:
200051398
14.

The single cell RNA seq of pulmonary alveolar epithelial cells

(Submitter supplied) The pulmonary alveolar epithelium which play key role in lung biological function is mainly composed of two types of epithelial cells: alveolar type I (AT1) and type II (AT2) cells. We know very little about developmental heterogeneity of the AT1 cell population. By using 10X genomics “Chromium Single Cell” technology, we performed single-cell RNA-seq (scRNA-seq) analyses of AT1 cells at postnatal day 3 (P3), P15, and P60, along with AT2 cells (P60) in mice. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
4 Samples
Download data: CSV
Series
Accession:
GSE106960
ID:
200106960
15.

p53 governs an alveolar type 1 differentiation program in lung cancer suppression

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL21103 GPL19057 GPL24247
45 Samples
Download data: H5, TSV
Series
Accession:
GSE231681
ID:
200231681
16.

p53 governs an alveolar type 1 differentiation program in lung cancer suppression [in_vivo_RNA_seq]

(Submitter supplied) Lung cancer is the leading cause of cancer deaths worldwide. TP53 tumor suppressor gene mutations occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, by promoting alveolar type 1 (AT1) differentiation. Using mice expressing oncogenic Kras and null, wild-type, or hypermorphic p53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
11 Samples
Download data: XLSX
Series
Accession:
GSE231679
ID:
200231679
17.

p53 governs an alveolar type 1 differentiation program in lung cancer suppression [in_vitro_RNA_seq]

(Submitter supplied) Lung cancer is the leading cause of cancer deaths worldwide. TP53 tumor suppressor gene mutations occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, by promoting alveolar type 1 (AT1) differentiation. Using mice expressing oncogenic Kras and null, wild-type, or hypermorphic p53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
6 Samples
Download data: XLSX
Series
Accession:
GSE231678
ID:
200231678
18.

p53 governs an alveolar type 1 differentiation program in lung cancer suppression [in_vivo_ATAC_seq2]

(Submitter supplied) Lung cancer is the leading cause of cancer deaths worldwide. TP53 tumor suppressor gene mutations occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, by promoting alveolar type 1 (AT1) differentiation. Using mice expressing oncogenic Kras and null, wild-type, or hypermorphic p53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21103
8 Samples
Download data: H5
Series
Accession:
GSE231677
ID:
200231677
19.

p53 governs an alveolar type 1 differentiation program in lung cancer suppression [in_vivo_ATAC_seq1]

(Submitter supplied) Lung cancer is the leading cause of cancer deaths worldwide. TP53 tumor suppressor gene mutations occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, by promoting alveolar type 1 (AT1) differentiation. Using mice expressing oncogenic Kras and null, wild-type, or hypermorphic p53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
4 Samples
Download data: H5
Series
Accession:
GSE231676
ID:
200231676
20.

p53 governs an alveolar type 1 differentiation program in lung cancer suppression [scRNA-Seq]

(Submitter supplied) Lung cancer is the leading cause of cancer deaths worldwide. TP53 tumor suppressor gene mutations occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, by promoting alveolar type 1 (AT1) differentiation. Using mice expressing oncogenic Kras and null, wild-type, or hypermorphic p53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
4 Samples
Download data: H5
Series
Accession:
GSE231675
ID:
200231675
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=2|blobid=MCID_662a71e4f436486715671c95|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center