Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.
Full record GDS5443

Human and chimpanzee TS12KOS vector-generated induced pluripotent stem cells

Analysis of chimpanzee iPSCs generated from blood cells using Sendai virus vector TS12KOS which carries reprogramming factors KLF4, OCT3/4, and SOX2. TS12KOS was also used to establish human iPSCs from fibroblasts. Results examine differentially expressed genes between human and chimpanzee iPSCs.
Organism:
Pan troglodytes; Homo sapiens
Type:
Expression profiling by array, transformed count, 2 cell type, 5 individual, 2 species sets
Platform:
GPL570
Series:
GSE62572
7 Samples
Download data: CEL
2.

Global gene expression profiling human and Chimpanzee induced pluripotent stem (iPS) cell

(Submitter supplied) Gene expression study of human and Chimpanzee iPS cell.
Organism:
Homo sapiens; Pan troglodytes
Type:
Expression profiling by array
Dataset:
GDS5443
Platform:
GPL570
7 Samples
Download data: CEL
Series
Accession:
GSE62572
ID:
200062572
3.

Gene Expression profiles of human iPS cells from CBC

(Submitter supplied) We investigated that gene expression profile of generated human iPS cells from cord blood cells using temperature sensitive sendai-virus vector.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
3 Samples
Download data: CEL, CHP
Series
Accession:
GSE25090
ID:
200025090
4.

Viral and transgene-free human induced pluripotent stem (iPS) cells using non-integrating Sendai virus (SeV) vectors.

(Submitter supplied) Whole-genome expression analysis of non-integrating Sendai virus (SeV) vector and retroviral vector-generated human iPS cells.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL4133
19 Samples
Download data: TXT
Series
Accession:
GSE24240
ID:
200024240
5.

Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells

(Submitter supplied) A variety of somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs), but the small number of CD34+ hematopoietic stem cells (HSCs) present in non-mobilized peripheral blood (PB) would be a convenient and desirable starting target. We report here a simple method for targeting derivation of iPSC from non-mobilized PB CD34+ HSCs using immunobead purification and 2-4 day culture to achieve enrichment of CD34+ HSCs to 80±9%, followed by reprogramming transduction with loxP-flanked polycistronic (Oct4, Klf4, Sox2, and c-Myc) STEMCCA-loxP lentivector at an MOI of 2. more...
Organism:
Homo sapiens
Type:
Methylation profiling by genome tiling array
Platform:
GPL13534
21 Samples
Download data: TXT
Series
Accession:
GSE40790
ID:
200040790
6.

Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human iPS cells

(Submitter supplied) Emergence of induced pluripotent stem cells (iPSC) technology has paved novel routes for regenerative medicine. iPSCs offer the possibilities of disease modeling, drug toxicity studies as well as cell replacement therapies by autologous transplantation. Classical protocols of iPSC generation harness infection by retro- or lenti-viruses. Although such integrating viruses represent very robust tools for reprogramming, the presence of viral transgenes in iPSCs is deleterious as it holds the risk of insertional mutagenesis leading to malignant transformation. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
10 Samples
Download data: TXT
Series
Accession:
GSE55725
ID:
200055725
7.

Critical role of transient activation of human endogenous retroviruses during reprogramming toward pluripotency

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Non-coding RNA profiling by high throughput sequencing
Platforms:
GPL16791 GPL11154 GPL10999
23 Samples
Download data: TXT
Series
Accession:
GSE56569
ID:
200056569
8.

Critical role of transient activation of human endogenous retroviruses during reprogramming toward pluripotency (RNA-Seq)

(Submitter supplied) We recently showed that some human induced pluripotent stem cell (iPSC) clones were defective in neural differentiation and were marked with the activation of long term repeats (LTRs) of human endogenous retroviruses (HERVs). We herein demonstrated that these LTRs were transiently overexpressed during the generation of iPSCs and contributed to reprogramming. When the generation of iPSCs was completed, LTRs were re-suppressed to levels similar to those in human ES cells. more...
Organism:
Homo sapiens
Type:
Non-coding RNA profiling by high throughput sequencing
Platform:
GPL11154
15 Samples
Download data: TXT
Series
Accession:
GSE56568
ID:
200056568
9.

Critical role of transient activation of human endogenous retroviruses during reprogramming toward pluripotency (Chip-Seq)

(Submitter supplied) We recently showed that some human induced pluripotent stem cell (iPSC) clones were defective in neural differentiation and were marked with the activation of long term repeats (LTRs) of human endogenous retroviruses (HERVs). We herein demonstrated that these LTRs were transiently overexpressed during the generation of iPSCs and contributed to reprogramming. When the generation of iPSCs was completed, LTRs were re-suppressed to levels similar to those in human ES cells. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL10999 GPL16791 GPL11154
8 Samples
Download data: TXT
Series
Accession:
GSE56567
ID:
200056567
10.

Critical role of transient activation of human endogenous retroviruses during reprogramming toward pluripotency

(Submitter supplied) We recently showed that some human induced pluripotent stem cell (iPSC) clones were defective in neural differentiation and were marked with the activation of long term repeats (LTRs) of human endogenous retroviruses (HERVs). We herein demonstrated that these LTRs were transiently overexpressed during the generation of iPSCs and contributed to reprogramming. When the generation of iPSCs was completed, LTRs were re-suppressed to levels similar to those in human ES cells. more...
Organism:
Homo sapiens
Type:
Expression profiling by array; Methylation profiling by array
Platforms:
GPL14550 GPL13534
137 Samples
Download data: TXT
Series
Accession:
GSE54848
ID:
200054848
11.

Simple Derivation of Transgene-Free iPS Cells by a Dual Recombinase Approach

(Submitter supplied) Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by the introduction of the transcription factors Oct4, Sox2, Klf4 and cMyc using various methods. Here, we describe a new approach for the derivation of murine iPSCs using a polycistronic non-viral inducible vector integrated into pseudo attP sites via the C31 integrase-mediated site-specific recombination and subsequent vector excision by Cre recombinase. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
15 Samples
Download data: TXT
Series
Accession:
GSE51605
ID:
200051605
12.

Gene expression profiles of TiPS generated in a defined condition, ES and T cells

(Submitter supplied) This experiment was designed to show the similarity among TiPS cells generated in a difined condition and ES cells and the differenced between TiPS cells and T cells.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL13497
4 Samples
Download data: TXT
Series
Accession:
GSE56234
ID:
200056234
13.

Transcriptional analysis of pre and post excision human induced pluripotent stem cells

(Submitter supplied) Transcriptional analysis was performed on pre and post excision human induced pluripotent stem cells, the donor human dermal fibroblasts (HDFs) they were derived from and control human embryonic stem cells
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
8 Samples
Download data: CEL
Series
Accession:
GSE48830
ID:
200048830
14.

Gene expression data of gdT-derived iPSCs and validated iPS clone for pluritest

(Submitter supplied) γδT cells constitute a small proportion of lymphocytes in peripheral blood. Unlike αβT cells, the anti-tumor activities are exerted through several different pathways in a MHC-unrestricted manner. Thus, immunotherapy using γδT cells is considered to be effective for various types of cancer. Occasionally, however, ex vivo expanded cells are not as effective as expected due to cell exhaustion. To overcome the issue of T-cell exhaustion, researchers have generated induced pluripotent stem cells (iPSCs) that harbor the same T-cell receptor (TCR) genes as their original T-cells, which provide nearly limitless sources for antigen-specific cytotoxic T lymphocytes (CTLs). more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL15207
3 Samples
Download data: CEL
Series
Accession:
GSE104605
ID:
200104605
15.

Gene expression from neonatal human fibroblasts and MV-derived iPSC clones

(Submitter supplied) Measles virus vector expressing the 4 reprogramming factors, OCT4, SOX2, KLF4 and cMYC was produced and used to derived iPSC from neonatal human fibroblasts (BJ). We used microarrays to compare the global gene expression in the derived MV-iPSC and compare it to the parental human neonatal fibroblast (BJ) and human embryonic stem cell (GSM551202)
Organism:
Homo sapiens
Type:
Expression profiling by array; Third-party reanalysis
Platform:
GPL570
4 Samples
Download data: CEL, TXT
Series
Accession:
GSE122790
ID:
200122790
16.

C/EBPα poises B cells for rapid reprogramming into iPS cells

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL13112 GPL13912
48 Samples
Download data: BED, TSV, TXT
Series
Accession:
GSE52397
ID:
200052397
17.

C/EBPα poises B cells for rapid reprogramming into iPS cells [RNA-Seq]

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: TSV
Series
Accession:
GSE52396
ID:
200052396
18.

C/EBPα poises B cells for rapid reprogramming into iPS cells [array]

(Submitter supplied) Somatic cell reprogramming into pluripotent stem cells induced by Oct4, Sox2, Klf4 and Myc (OSKM) occurs at low frequencies and with a considerable delay involving a stochastic phase. In contrast, transdifferentiation of B cells into macrophages induced by C/EBPα is fully efficient and initiated almost immediately. We now discovered that a pulse of C/EBPα in B cell precursors followed by OSKM expression dramatically enhances reprogramming to pluripotency, overcoming the stochastic phase. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL13912
44 Samples
Download data: TXT
Series
Accession:
GSE46321
ID:
200046321
19.

Generation of a Panel of Induced Pluripotent Stem Cells From Chimpanzees: a Resource for Comparative Functional Genomics [ChIP-Seq]

(Submitter supplied) Comparative genomics studies in primates are extremely restricted due to our limited access to samples from non-human apes. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we have generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. more...
Organism:
Homo sapiens; Pan troglodytes
Type:
Genome binding/occupancy profiling by high throughput sequencing; Third-party reanalysis
Platform:
GPL19148
9 Samples
Download data: BED, TXT
Series
Accession:
GSE69919
ID:
200069919
20.

Generation of a Panel of Induced Pluripotent Stem Cells From Chimpanzees: a Resource for Comparative Functional Genomics

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens; Pan troglodytes
Type:
Expression profiling by high throughput sequencing; Methylation profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Third-party reanalysis
Platforms:
GPL16791 GPL13534 GPL19148
65 Samples
Download data: BED
Series
Accession:
GSE61343
ID:
200061343
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_6169f686799dd072b8521ca7|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center