NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE15094 Query DataSets for GSE15094
Status Public on Nov 13, 2009
Title Resistance to hop iso-α-acids in yeast involves active export and vacuolar sequestration
Organism Saccharomyces cerevisiae
Experiment type Expression profiling by array
Summary The hop plant, Humulus lupulus L., contains an exceptionally high content of secondary metabolites, the hop iso-α-acids, which possess a range of beneficial properties including antiseptic action. Studies performed on the mode of action of hop iso-α-acids have hitherto been restricted to lactic acid bacteria. The present study investigates molecular mechanisms of hop iso-α-acid resistance in the model eukaryote Saccharomyces cerevisiae. Growth inhibition occurred at concentrations of hop iso-α-acids that were an order of magnitude higher than those found with hop-tolerant prokaryotes. Chemostat-based transcriptome analysis and phenotype screening of the S. cerevisiae haploid gene deletion collection were used as complementary methods to screen for genes involved in hop iso-α-acids detoxification and tolerance. Further analysis of deletion mutants confirmed that yeast tolerance to hop iso-α-acids involves two major processes: active export of iso-α-acids across the plasma membrane and active proton pumping into the vacuole by the V-ATPase to enable vacuolar sequestration of iso-α-acids. Furthermore, iso-α-acids were shown to affect cellular metal homeostasis by acting as strong zinc and iron chelator.
 
Overall design Two complementary genome-wide approaches were employed to investigate cellular responses of S. cerevisiae to hop extracts enriched in iso-α-acids. Microarray transcriptome analysis was performed on chemostat cultures of an S. cerevisiae reference strain grown in the presence and absence of iso-α-acids. In addition, screening of the nearly complete set of yeast open reading frame (ORF) haploid knock-outs generated by the Saccharomyces Genome Deletion Project (SGDP) (Open Biosystems) identified the mutants with increased hop sensitivity. Subsequently, involvement of selected genes and cellular processes in hop acid sensitivity and tolerance was analyzed by construction and detailed analysis of selected mutant strains.
 
Contributor(s) Hazelwood LA, Pronk JT, Daran J
Citation(s) 19915041
Submission date Mar 04, 2009
Last update date Jul 01, 2016
Contact name Jean-Marc Daran
E-mail(s) j.g.daran@tudelft.nl
Phone +31 15 278 2412
Organization name Delft University of Technology
Department Department of Biotechnology
Lab Kluyver centre for genomics of industrial organisms
Street address Julianalaan 67
City Delft
ZIP/Postal code 2628BC
Country Netherlands
 
Platforms (1)
GPL90 [YG_S98] Affymetrix Yeast Genome S98 Array
Samples (10)
GSM137497 C-lim Anaerobic reference (pH 5) #1
GSM137498 C-lim Anaerobic reference (pH 5) #2
GSM137675 C-lim Anaerobic reference (pH 5) #3
Relations
BioProject PRJNA114801

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE15094_RAW.tar 16.0 Mb (http)(custom) TAR (of CEL)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap