NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE15465 Query DataSets for GSE15465
Status Public on Aug 20, 2009
Title The regulation of reserve carbohydrate metabolism in S cerevisiae in response to nutrient availability
Organism Saccharomyces cerevisiae
Experiment type Expression profiling by array
Summary In Saccharomyces cerevisiae, glycogen and trehalose are important reserve carbohydrates that accumulate under nutrient limitation in batch cultures. An inherent draw-back of batch studies is that specific growth rate and substrate and product concentrations are variable over time and between cultures. The aim of this present study was to identify the nutritional requirements associated with high accumulation of reserve carbohydrates at a fixed specific growth rate (0.10 h-1) in anaerobic chemostat cultures that were limited by one of five different nutrients (carbon, nitrogen, sulfur, phosphorus or zinc). Reserve carbohydrates accumulation is not a general response to nutrient limitation. Over the conditions tested, accumulation occurs essentially under nitrogen (and to a lesser extent carbon) limited conditions. This was confirmed by the transcriptional profile of the genes involved in trehalose biosynthesis. We show that the transcriptional induction of both glycogen and trehalose biosynthesis genes was to a large extent driven by the regulator Msn2/4. However, the main regulatory control of glycogen biosynthesis was post-translational. Under nitrogen limitation, the ratio of glycogen synthase over glycogen phosphorylase increased up to eight-fold, thus enabling an increased flux towards glycogen biosynthesis.
 
Overall design We studied this in anaerobic chemostat cultures at a dilution rate of 0.10 h-1 where growth was limited by five different nutrients (carbon, nitrogen, sulfur, phosphorus or zinc limitations). In addition, we studied the expression of these pathways at transcriptional and post-transcriptional levels and assessed the role of Msn2/4 in mediating transcriptional induction of glycogen and trehalose genes in the absence of stress.
 
Contributor(s) Hazelwood LA, Pronk JT, Daran J
Citation(s) 19734328
Submission date Mar 31, 2009
Last update date Jul 01, 2016
Contact name Jean-Marc Daran
E-mail(s) j.g.daran@tudelft.nl
Phone +31 15 278 2412
Organization name Delft University of Technology
Department Department of Biotechnology
Lab Kluyver centre for genomics of industrial organisms
Street address Julianalaan 67
City Delft
ZIP/Postal code 2628BC
Country Netherlands
 
Platforms (1)
GPL90 [YG_S98] Affymetrix Yeast Genome S98 Array
Samples (21)
GSM137497 C-lim Anaerobic reference (pH 5) #1
GSM137498 C-lim Anaerobic reference (pH 5) #2
GSM137675 C-lim Anaerobic reference (pH 5) #3
Relations
BioProject PRJNA115903

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE15465_RAW.tar 57.1 Mb (http)(custom) TAR (of CEL, CHP, EXP)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap