NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE18163 Query DataSets for GSE18163
Status Public on Jul 07, 2010
Title Subunit-specific vs. non-selective proteasome modulation in limiting inflammation in experimental colitis
Organism Mus musculus
Experiment type Expression profiling by array
Summary Inflammatory bowel disease (IBD), comprising Crohn´s disease and Ulcerative colitis, is characterized by chronic relapsing inflammation of the gut. It has been shown that increased proteasomal activity is associated with the expression of immunoproteasomes, which enhances NF-kB activation and thus promotes inflammation in IBD-patients. Here, we investigate whether modulation of the proteasomal activity is a suitable therapeutic approach to limit inflammation in colitis. This concept was tested in two different experimental setups. First, development of dextran sulfate sodium (DSS)-induced colitis was tested in lmp7-/--mice, which lack the essential immunoproteasome-subunit LMP7 or in wildtype-mice treated with the proteasome inhibitor bortezomib. Compared to WT mice, lmp7-/- mice revealed significantly attenuated colitis resulting from reduced NF-kB activation in the absence of LMP7. Further, treatment with bortezomib revealed dose-dependent amelioration of DSS-induced inflammation. In both approaches proteasome modulation limited the infiltration of neutrophils, consequently reducing tissue damage. In summary our experiments demonstrate that modulation of the proteasomal activity is effective in attenuating experimental colitis. In particular, our data suggest that the immunoproteasome-subunit LMP7 is a suitable target for the therapy of IBD.
 
Overall design Microarray experiments were performed as dual-color hybridizations. To compensate for dye-specific effects, a dye-reversal color-swap was applied. Samples of proximal colon were cut longitudinally, washed in PBS, shortly incubated in 4M Guanidinium-isothiocyanat and transferred to TRIzol (Invitrogen).
 
Contributor(s) Schmidt N, Molenkopf H, Kaufmann S, Steinhoff U, Joeris T
Citation(s) 20581238
Submission date Sep 18, 2009
Last update date Dec 06, 2012
Contact name Hans-Joachim Mollenkopf
E-mail(s) mollenkopf@mpiib-berlin.mpg.de
Phone +49 30 28460 482
Organization name Max-Planck-Institute for Infection Biology
Lab Microarray/Genomics Core Facility
Street address Charitéplatz 1
City Berlin
ZIP/Postal code 10117
Country Germany
 
Platforms (1)
GPL2872 Agilent-012694 Whole Mouse Genome G4122A (Feature Number version)
Samples (8)
GSM453987 LMP7 naive vs. LMP7 3%DSS d4
GSM453988 LMP7 3%DSS d4 vs. LMP7 naive
GSM453989 LMP7 naive vs. LMP7 3%DSS d8
Relations
BioProject PRJNA119469

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE18163_RAW.tar 6.2 Mb (http)(custom) TAR
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap