NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE19407 Query DataSets for GSE19407
Status Public on Apr 20, 2011
Title Smoking-induced Wnt pathway downregulation
Organism Homo sapiens
Experiment type Expression profiling by array
Summary The Wnt pathway plays a central role in controlling differentiation of epithelial tissues; when Wnt is on, differentiation is suppressed, but when Wnt is off, differentiation is allowed to proceed. Based on this concept, we hypothesized that expression of key genes in the Wnt pathway are suppressed in the human airway epithelium under the stress of cigarette smoking, a stress associated with dysregulation of the differentiated state of the airway epithelium. For this purpose, HG-U133 Plus 2.0 microarrays were used to assess the expression of Wnt-related genes in the small airway (10th-12th generation) epithelium (SAE) obtained via bronchoscopy and brushing of healthy nonsmokers (n=47), healthy smokers (n=58), and smokers with established COPD (n=22). With expression defined as present in >20% of samples, microarray analysis demonstrated that 35 of 57 known Wnt-related genes are expressed in the adult SAE. Wnt pathway downstream targets β-catenin (p<0.05) and the transcription factor 7-like 1 were down-regulated in healthy smokers, and smokers with COPD, as were a number of Wnt target genes, including VEGFA, CCND1, MMP7, CLDN1, SOX9, RHOU (all p<0.05 compared to healthy nonsmokers). As a mechanism to explain this broad, smoking-induced suppression of the Wnt pathway, we assessed expression of the DKK and SFRP families, extracellular regulators that suppress the Wnt pathway. Among these, secreted frizzled-related protein 2 (SFRP2), was up-regulated 4.3-fold (p<0.0001) in healthy smokers and 4.9-fold (p<0.0001) in COPD smokers, an observation confirmed by TaqMan Real-time PCR. AT the protein levels, Western analysis demonstrated SFRP2 up-regulation, and immunohistochemistry demonstrated that the smoking-induced SFRP2 upregulation occurred in differentiated ciliated cells. Finally, cigarette smoke extract mediated up-regulation of SFRP2 and downregulation of Wnt target genes in airway epithelial cells in vitro. These observations are consistent with the hypothesis that the Wnt pathway plays a role in airway epithelial cell differentiation in the adult human airway epithelium, with smoking associated with down-regulation of Wnt pathway, contributing to the dysregulation of airway epithelial differentiation observed in the smoking-related airway disorders.
 
Overall design Affymetrix arrays were used to assess gene expression data of genes in the Wnt pathway in small airway epithelium obtained by fiberoptic bronchoscopy of 47 healthy non-smokers and 58 healthy smokers and 22 smokers with COPD.
 
Contributor(s) Wang R, Wang G, Hassan I, Strulovici-Barel Y, Hackett NR, Crystal RG
Citation(s) 21490961
Submission date Dec 10, 2009
Last update date Mar 25, 2019
Contact name Yael Strulovici-Barel
E-mail(s) yas2003@med.cornell.edu
Organization name Weill Cornell Medical College
Department Department of Genetic Medicine
Lab Crystal
Street address 1300 York Avenue
City New York
State/province NY
ZIP/Postal code 10021
Country USA
 
Platforms (1)
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
Samples (127)
GSM101095 small airways, non-smoker 001, RMA and MAS
GSM101096 small airways, non-smoker 004, RMA and MAS
GSM101097 small airways, non-smoker 002, RMA and MAS
Relations
BioProject PRJNA121779

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE19407_RAW.tar 2.7 Gb (http)(custom) TAR (of CEL, CHP)
Processed data included within Sample table
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap