NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE26021 Query DataSets for GSE26021
Status Public on Aug 17, 2011
Title Expression data from C2C12 murine myoblast cells infected with an inducible Msx1-ER fusion protein
Organism Mus musculus
Experiment type Expression profiling by array
Summary The spatial and temporal control of gene expression during development requires the concerted actions of sequence-specific transcriptional regulators and epigenetic chromatin modifiers, which are thought to function within precise nuclear compartments. However, how these activities are coordinated within the dynamic context of the nuclear environment is still largely unresolved. Here we show that transcriptional repression by the Msx1 homeoprotein coordinates recruitment of Polycomb to genomic targets with localization to the nuclear periphery. Using genome-wide ChIP-Seq analyses to identify genomic binding sites for Msx1, we find that repressed target genes are enriched at the nuclear periphery in myoblast cells. We further show that the interaction of Msx1 with the Polycomb repressive complex PRC2 is required for transcriptional repression and regulation of myoblast differentiation, and promotes increased tri-methylation of lysine 27 on histone H3 (H3K27me3) at Msx1 target genes. Furthermore, Msx1 genomic binding promotes the dynamic spatial redistribution of the H3K27me3 repressive mark to the nuclear periphery in developing embryos in vivo. Thus, our findings suggest a hitherto unappreciated spatial coordination of transcription factor binding, Polycomb recruitment, and subnuclear localization in regulation of developmentgene expression programs.
In order to identify genes regulated by Msx1, we infected C2C12 myoblast cells with a retrovirus expressing a tamoxifen-regulated Msx1 protein, Msx1-ER (or with empty vector as a control), followed by induction with 0.2 nM of tamoxifen or vehicle (DMSO) for 6 hours. Regulated genes were identified as those that changed in expression upon tamoxifen induction of the Msx1-ER protein but did not change in the empty vector control.
 
Overall design Experiments were performed in triplicate for each of the four experimental conditions (Msx1-ER + tamoxifen, Msx1-ER - tamoxifen, empty vector control + tamoxifen, empty vector control - tamoxifen), for a total of 12 independent array samples.

This submission represents the transcriptome component of the study.
 
Contributor(s) Wang J, Kumar RM, Biggs VJ, Lee H, Chen Y, Kagey MH, Young RA, Abate-Shen C
Citation missing Has this study been published? Please login to update or notify GEO.
Submission date Dec 11, 2010
Last update date Feb 18, 2018
Contact name Richard A Young
E-mail(s) young_computation@wi.mit.edu
Phone 617-258-5219
Organization name Whitehead Institute for Biomedical Research
Lab Young Lab
Street address 9 Cambridge Center
City Cambridge
State/province MA
ZIP/Postal code 02142
Country USA
 
Platforms (1)
GPL81 [MG_U74Av2] Affymetrix Murine Genome U74A Version 2 Array
Samples (12)
GSM638408 Empty vector, no tamoxifen, biological rep1
GSM638409 Empty vector, no tamoxifen, biological rep2
GSM638410 Empty vector, no tamoxifen, biological rep3
This SubSeries is part of SuperSeries:
GSE27089 The Msx1 homeoprotein recruits Polycomb to the nuclear periphery during development
Relations
BioProject PRJNA142525

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE26021_RAW.tar 29.6 Mb (http)(custom) TAR (of CEL)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap