NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE29347 Query DataSets for GSE29347
Status Public on May 17, 2011
Title Gene expression profiling in BCR/ABL expressing LSCs and BCR/ABL expressing Alox5-/-LSCs
Organism Mus musculus
Experiment type Expression profiling by array
Summary We previously demonstrated that Alox5 deficiency impairs the function of LSCs and prevents the initiation of BCR-ABL-induced CML. To identify the pathways in which Alox5 gene regulates function of LSCs, we performed a comparative DNA microarray analysis using total RNA isolated from non-BCR-ABL-expressing Lin-Sca-1+c-Kit+, BCR-ABL-expressing wild type LSCs and BCR-ABL-expressing Alox5-/- LSCs. The result was validated by quantitative real-time PCR analysis of non-BCR-ABL-expressing Lin-Sca-1+c-Kit+, BCR-ABL-expressing wild type LSCs and BCR-ABL-expressing Alox5-/- LSCs.
We have shown that Alox5 is a critical regulator of leukemia stem cells (LSCs) in a BCR-ABL-induced chronic myeloid leukemia (CML) mouse model, and we hypothesize that the Alox5 pathway represents a major molecular network that regulates LSC function. Therefore, we sought to further dissect this pathway by comparing the gene expression profiles of wild type and Alox5-/- LSCs derived from our mouse model for BCR-ABL-induced CML. DNA microarray analysis revealed a small group of candidate genes that exhibited changes in the levels of transcription in the absence of Alox5 expression. In particular, we noted that the expression of the Msr1 gene was up-regulated in Alox5-/- LSCs, suggesting that Msr1 might suppress the proliferation of LSCs.  Using our CML mouse model, we show that Msr1 is down-regulated by BCR-ABL and this down-regulation is partially restored by Alox5 deletion, and that Msr1 deletion causes acceleration of CML development. Moreover, Msr1 deletion markedly increases LSC function through its effects on cell cycle progression and apoptosis. We also show that Msr1 affects CML development by regulating the PI3K-AKT pathway and β-Catenin. Together, these results demonstrate that Msr1 suppresses LSCs and CML development. The enhancement of Msr1 function may be of significance in the development of novel therapeutic strategies targeting CML.
 
Overall design To identify genes that are regulated by BCR-ABL in LSCs and LSCs without Alox5 gene, we compared the gene profile between wild type(WT) LSCs or Alox5-/- LSCs.
 
Contributor(s) Li S, Chen Y, Hu Y
Citation(s) 21596859
Submission date May 17, 2011
Last update date Mar 04, 2019
Contact name shaoguang Li
E-mail(s) shaoguang.li@umassmed.edu
Phone 5088561691
Organization name Worcester
Street address 364 Plantation street
City Worcester
State/province MA
ZIP/Postal code 01609
Country USA
 
Platforms (1)
GPL6246 [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version]
Samples (6)
GSM725459 LSC without Alox5, Biological rep1
GSM725460 LSC without Alox5, Biological rep2
GSM725461 LSC, Biological rep1
Relations
BioProject PRJNA138603

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE29347_RAW.tar 27.0 Mb (http)(custom) TAR (of CEL)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap