NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE34886 Query DataSets for GSE34886
Status Public on Jan 06, 2012
Title Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity [expression profiling]
Organism Mus musculus
Experiment type Expression profiling by array
Summary The TET family of FE(II) and 2-oxoglutarate-dependent enzymes (Tet1/2/3) promote DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which they further oxidize into 5-formylcytosine and 5-carboxylcytosine. Tet1 is robustly expressed in mouse embryonic stem cells (mESCs) and has been implicated in mESC maintenance. Here we demonstrate that, unlike genetic deletion, RNAi-mediated depletion of Tet1 in mESCs led to a significant reduction in 5hmC and loss of mESC identity. The differentiation phenotype due to Tet1 depletion positively correlated with the extent of 5hmC loss. Meta-analyses of genomic datasets suggested interaction between Tet1 and leukemia inhibitory factor (LIF) signaling. LIF signaling is known to promote self-renewal and pluripo-tency in mESCs partly by opposing MAPK/ERK mediated differentiation. Withdrawal of LIF leads to differentiation of mESCs. We discovered that Tet1 depletion impaired LIF-dependent Stat3-mediated gene activation by affecting Stat3's ability to bind to its target sites on chromatin. Nanog overexpression or inhibition of MAPK/ERK signaling, both known to maintain mESCs in the absence of LIF, rescued Tet1 depletion, further supporting the dependence of LIF/Stat3 signaling on Tet1. These data support the conclusion that analysis of mESCs in the hours/days immediately following efficient Tet1 depletion reveals Tet1’s normal physiological role in maintaining the pluripotent state that may be subject to homeostatic compensation in genetic models.
 
Overall design Genome-wide mapping of 5hmC and microarray gene expression profiling in E14Tg2a mESCs after transfection with indicated siRNAs: Tet1 siRNA #1 (Invitrogen, MSS284895), Tet1 siRNA #2 (Invitrogen, MSS284897), and Control siRNA duplex targeting firefly luciferase.
 
Contributor(s) Jothi R, Hu G, Freudenberg J
Citation(s) 22210859
Submission date Jan 05, 2012
Last update date Jun 21, 2012
Contact name Raja Jothi
E-mail(s) jothi@mail.nih.gov
Organization name National Institutes of Health
Department National Institute of Environmental Health Sciences
Lab Systems Biology
Street address 111 TW Alexander Drive; A314
City RTP
State/province NC
ZIP/Postal code 27709
Country USA
 
Platforms (1)
GPL14661 [Mouse430_2_Mm_EntrezG] Affymetrix GeneChip Mouse Genome 430 2.0 Array [Brainarray Version 13]
Samples (8)
GSM846063 Control ES cells 96hr, rep1
GSM846064 Control ES cells 96hr, rep2
GSM846065 Tet1-KD ES cells siRNA #1 96hr, rep1
This SubSeries is part of SuperSeries:
GSE34267 Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity
Relations
BioProject PRJNA156265

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE34886_RAW.tar 28.7 Mb (http)(custom) TAR (of CEL)
Raw data provided as supplementary file
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap