NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE40490 Query DataSets for GSE40490
Status Public on Dec 31, 2012
Title Hippocampal gene expression profiling in a rat model of posttraumatic epilepsy reveals temporal upregulation of lipid metabolism-related genes
Organism Rattus norvegicus
Experiment type Expression profiling by array
Summary Traumatic brain injury occasionally causes posttraumatic epilepsy. To elucidate the molecular events responsible for posttraumatic epilepsy, we established a rodent model that involved the injection of microliter quantities of FeCl3 solution into the amygdalar nuclear complex. We previously compared hippocampal gene expression profiles in the traumatic epilepsy model and normal rats at 5 days after brain injury (acute phase) and observed the role of inflammation. In this study, we focused on later stages of epileptogenesis. We compared gene expression profiles at 5, 15 (sub-chronic phase), and 30 days (chronic phase) after brain injury to identify temporal changes in molecular networks involved in epileptogenesis. A total of 81 genes was significantly (at least 2-fold) up- or downregulated over the course of disease progression. We found that genes related to lipid metabolism, namely, Apoa1, Gh, Mc4r, Oprk1, and Pdk4, were temporarily upregulated in the sub-chronic phase. Changes in lipid metabolism regulation might be related to seizure propagation during epileptogenesis. This temporal description of hippocampal gene expression profiles throughout epileptogenesis provides clues to potential markers of disease phases and new therapeutic targets.
 
Overall design We employed amygdalar FeCl3 injection to induce chronic, recurrent limbic-type partial seizures with spontaneous secondarily generalized seizures in rats . Sixteen male Wistar rats were kept in hanging cages with unlimited access to food and water and 12-h light-dark cycles. Surgical procedures were conducted following anesthesia with intraperitoneal (i.p.) sodium pentobarbital injections (37.5 mg/kg) at 5 weeks of age. Stereotaxic coordinates were determined with the rat brain atlas. The incisor bar was set 3.3 mm below the interaural line. While under anesthesia, a polyethylene tube containing a stylet to serve as an external guide cannula (1.09-mm outer diameter (o.d.), 0.55-mm inner diameter (i.d.), 2.5 cm in length) was stereotaxically implanted and anchored to the skull with miniature screws and dental cement. The cannula was fixed 5.6 mm anterior and 4.8 mm to the right of the lambda and 8.5 mm below the surface of the skull, positioning it at the right amygdaloid body. Randomly selected rats for in vivo microdialysis to estimate redox had guide cannula placed but were prepared without dental cement on the skull where the microdialysis guide cannula was to be placed. Five days later, the stylet was replaced with an internal delivery cannula (0.5 mm o.d., 0.25 mm i.d.). FeCl3 was dissolved in saline solution (100 mM, pH 2.2). FeCl3 solution (1.0 μl) was injected through the inner cannula by means of a microinfusion pump (EP-60; Eicom, Tokyo, Japan) set at a rate of 1.0 μl/min (Fe group; n = 12). The external guide cannula was used for electroencephalogram (EEG) recording with an electroencephalograph (type 1A63; SAN-EI, Tokyo, Japan). Rats in the control group (n = 4) were each injected with 1.0 μl saline (pH 2.2). Both EEG and behavior were observed for at least 6 h after the injection. While we did not measure the rate or frequency of seizures, we did confirm that the animals had recurrent seizures. These observations and the acute recording confirmed the accuracy of the amygdalar injection. No seizure activity was observed in control group rats. Animals in the control group were sacrificed by cervical dislocation 15 days after amygdalar injection. Animals in the Fe group were subdivided into 3 groups and were sacrificed at 5 (acute phase), 15 (sub-chronic phase of injury), and 30 days (chronic phase of injury) after amygdalar injection. The stages of disease development were categorized according to the EEGs of the model rats; within 5 days after amygdalar injection, epileptiform discharges were recorded in the contralateral and ipsilateral amygdalae; by 15 days after injection, interictal spike discharges were more consistently observed in the contralateral uninjected amygdala; at 30 days after injection bilateral interictal spike discharges continued to be observed. After sacrifice, the right hippocampi were immediately removed and placed in ice-cold phosphate-buffered saline and homogenized (Polytron PT 3000; Brinkmann Instruments, Inc., Westbury, NY, USA) for RNA extraction.
 
Contributor(s) Kojima T, Ueda Y, Kitamoto A, Willmore LJ
Citation(s) 23585123
Submission date Aug 30, 2012
Last update date Dec 21, 2016
Contact name Toshio Kojima
Organization name Toyohashi University of Technology
Department Health Care Center
Street address 1-1 Hibarigaoka Tenpaku-cho
City Toyohashi
ZIP/Postal code 441-8580
Country Japan
 
Platforms (1)
GPL4135 Agilent-014879 Whole Rat Genome Microarray 4x44K G4131F (Feature Number version)
Samples (16)
GSM994950 Control_1
GSM994951 Control_2
GSM994952 Control_3
Relations
BioProject PRJNA174180

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE40490_RAW.tar 36.4 Mb (http)(custom) TAR (of TXT)
Processed data included within Sample table
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap