NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE43474 Query DataSets for GSE43474
Status Public on Apr 14, 2015
Title Inhibitory effects of galacturonic acid on Saccharomyces cerevisiae: involvement of hexose transporters
Organism Saccharomyces cerevisiae
Experiment type Expression profiling by array
Summary Aim: Analyse inhibitory effects of galacturonic acid, an important constituent of plant biomass hydrolysates, on growing and starving cultures of Saccharomyces cerevisiae CEN.PK113-7D. Method & Results: Biomass yields in aerobic and anaerobic glucose-limited chemostat cultures (pH 3.5) were reduced by 25 and 10%, respectively, upon addition of 10 g∙l-1 galacturonic acid. Genes previously reported to show a transcriptional response to other organic acids were overrepresented in a set of galacturonic-acid responsive genes identified by microarray analysis. These results suggested that galacturonic acid causes weak-acid uncoupling of the yeast plasma membrane pH gradient. Consistent with this hypothesis, galacturonate-accelerated loss of viability in starving cell suspensions was strongly pH dependent. Loss of viability was much slower in a strain in which all HXT (hexose transporter) genes were deleted. Moreover, deletion of HXT genes alleviated growth inhibition on ethanol observed at galacturonic acid concentrations of 10 g∙l-1 and above. Conclusions: At low pH, galacturonic acid negatively affects the physiology of S. cerevisiae. Reduced sensitivity of hexose-transporter mutants indicated that one or more HXT transporters are involved in transport of galacturonic acid. Significance and Impact: This study shows that galacturonic acid toxicity should be taken into account in process development for yeast-based fermentative conversion of pectin-rich feedstocks such as sugar beet pulp and citrus peel. Involvement of hexose transporters in galacturonic acid toxicity provides leads for improving tolerance.
 
Overall design To investigate the impact of galacturonic acid on S. cerevisiae, a DNA microarray-based transcriptome analysis was performed on aerobic, glucose-limited chemostat cultures grown in the presence and absence of 10 g∙l-1 galacturonic acid at pH3.5.
 
Contributor(s) Huijses E, van Maris AJ, Pronk JT, Daran J
Citation missing Has this study been published? Please login to update or notify GEO.
Submission date Jan 14, 2013
Last update date Jul 01, 2016
Contact name Jean-Marc Daran
E-mail(s) j.g.daran@tudelft.nl
Phone +31 15 278 2412
Organization name Delft University of Technology
Department Department of Biotechnology
Lab Kluyver centre for genomics of industrial organisms
Street address Julianalaan 67
City Delft
ZIP/Postal code 2628BC
Country Netherlands
 
Platforms (1)
GPL90 [YG_S98] Affymetrix Yeast Genome S98 Array
Samples (7)
GSM1063367 CEN.PK113-7D Aerobic glucose-limited chemostat pH3.5 (EH5)
GSM1063368 CEN.PK113-7D Aerobic glucose-limited chemostat pH3.5 (EH6)
GSM1063369 CEN.PK113-7D Aerobic glucose-limited chemostat pH3.5 (EH7)
Relations
BioProject PRJNA186523

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE43474_RAW.tar 8.5 Mb (http)(custom) TAR (of CEL)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap