NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE54187 Query DataSets for GSE54187
Status Public on Jul 31, 2014
Title Metastatic potential is determined early in synovial sarcoma development and reflected by tumor molecular features [transcriptome]
Organism Homo sapiens
Experiment type Expression profiling by array
Summary Synovial sarcoma (SynSa) is an aggressive mesenchymal tumor, comprising approximately 10% of all soft tissue sarcomas. Over half of SynSa patients develop metastasis or local recurrence, but the underlying molecular mechanisms of the aggressive clinical behavior remain poorly characterized. Sixty four frozen tumor specimens from 54 SynSa patients were subjected to array comparative genomic hybridization (aCGH) and gene expression profiling. The examined set of tumor specimens included 16 primary tumors from untreated patients who did not develop metastasis/local recurrence (SynSa1 group), 26 primary tumors from untreated patients who developed metastases or local recurrence during follow-up (SynSa2 group), and 22 metachronous metastatic/recurrent SynSa tumors (SynSa3 group). AURKA and KIF18A, which play important roles in various mitotic events, were the two most up-regulated genes in SynSa2 and SynSa3 groups compared to the SynSa1 group. Expression profiles of SynSa2 and SynSa3 tumors did not show any significant differences. Analysis of genomic index (GI) based on aCGH profiles demonstrated that the SynSa1 group consisted of tumors with significantly less complex genomes compared to SynSa2 and SynSa3 groups. There was no significant difference in genome complexity between SynSa2 and SynSa3 tumors. Primary SynSa tumors from patients who develop metastases or local recurrence share common molecular features with metastatic/recurrent tumors. Presented data suggest that the aggressive clinical SynSa behavior is determined early in tumorigenesis and might be related to impaired regulation of mitotic mechanisms. Introduction: Synovial sarcoma (SynSa) is an aggressive mesenchymal tumor, comprising approximately 10% of all soft tissue sarcomas. Over half of SynSa patients develop metastasis or local recurrence, but the underlying molecular mechanisms of the aggressive clinical behavior remain poorly characterized. Materials and methods: Sixty four frozen tumor specimens from 54 SynSa patients were subjected to array comparative genomic hybridization (aCGH) and gene expression profiling. The examined set of tumor specimens included 16 primary tumors from untreated patients who did not develop metastasis/local recurrence (SynSa1 group), 26 primary tumors from untreated patients who developed metastases or local recurrence during follow-up (SynSa2 group), and 22 metachronous metastatic/recurrent SynSa tumors (SynSa3 group). Results: AURKA and KIF18A, which play important roles in various mitotic events, were the two most up-regulated genes in SynSa2 and SynSa3 groups compared to the SynSa1 group. Expression profiles of SynSa2 and SynSa3 tumors did not show any significant differences. Analysis of genomic index (GI) based on aCGH profiles demonstrated that the SynSa1 group consisted of tumors with significantly less complex genomes compared to SynSa2 and SynSa3 groups. There was no significant difference in genome complexity between SynSa2 and SynSa3 tumors. Conclusions: Primary SynSa tumors from patients who develop metastases or local recurrence share common molecular features with metastatic/recurrent tumors. Presented data suggest that the aggressive clinical SynSa behavior is determined early in tumorigenesis and might be related to impaired regulation of mitotic mechanisms.
 
Overall design Gene expression profiling of 15 primary tumors from untreated patients who did not develop metastasis/local recurrence (SynSa1 group), 21 primary tumors from untreated patients who developed metastases or local recurrence during follow-up (SynSa2 group), and 21 metachronous metastatic/recurrent SynSa tumors (SynSa3 group); Agilent One-Color technology.
 
Contributor(s) Przybyl J, Sciot R, Wozniak A, Schöffski P, Vanspauwen V, Samson I, Siedlecki JA, Rutkowski P, Debiec-Rychter M
Citation(s) 24842110
Submission date Jan 17, 2014
Last update date Jan 09, 2018
Contact name Joanna Przybyl
E-mail(s) jprzybyl@stanford.edu
Organization name Stanford University
Department Department of Pathology
Street address 300 Pasteur Drive
City Stanford
ZIP/Postal code 94305
Country USA
 
Platforms (1)
GPL13497 Agilent-026652 Whole Human Genome Microarray 4x44K v2 (Probe Name version)
Samples (57)
GSM1309425 Patient 1 in group SynSa1 [transcriptome]
GSM1309426 Patient 2 in group SynSa1 [transcriptome]
GSM1309427 Patient 3 in group SynSa1 [transcriptome]
This SubSeries is part of SuperSeries:
GSE54188 Metastatic potential is determined early in synovial sarcoma development and reflected by tumor molecular features
Relations
BioProject PRJNA235616

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE54187_RAW.tar 122.7 Mb (http)(custom) TAR (of TXT)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap