NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE69632 Query DataSets for GSE69632
Status Public on Jun 08, 2015
Title Effects of Integrating and Non-integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells
Organism Homo sapiens
Experiment type Genome variation profiling by SNP array
Summary Human-induced pluripotent stem cells (iPSCs) are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we investigated the genomic aberration profiles of 19 human cell lines: 5 embryonic stem cell (ESC) lines, 6 iPSC lines derived using integrating vectors (“integrating iPSC lines”), 6 iPSC lines derived using non-integrating vectors (“non-integrating iPSC lines”), and the 2 parental cell lines from which the iPSCs were derived. The genome-wide copy number variation (CNV), loss of heterozygosity (LOH) and mosaicism patterns of integrating and non-integrating iPSC lines were investigated. The maximum sizes of CNVs in the genomes of the integrating iPSC lines were 20 times higher than those of the non-integrating iPSC lines. Moreover, the total number of CNVs was much higher in integrating iPSC lines than in other cell lines. The average numbers of novel CNVs with a low degree of overlap with the DGV and of likely pathogenic CNVs with a high degree of overlap with the ISCA database were highest in integrating iPSC lines. Different SNP calls revealed that, using the parental cell genotype as a reference, integrating iPSC lines displayed more single nucleotide variations and mosaicism than did non-integrating iPSC lines. This study describes the genome stability of human iPSCs generated using either a DNA-integrating or non-integrating reprogramming method, of the corresponding somatic cells, and of hESCs. Our results highlight the importance of using a high-resolution method to monitor genomic aberrations in iPSCs intended for clinical applications to avoid any negative effects of reprogramming or cell culture.
 
Overall design 19 human cell lines: 5 embryonic stem cell (ESC) lines, 6 iPSC lines derived using integrating vectors (“integrating iPSC lines”), 6 iPSC lines derived using non-integrating vectors (“non-integrating iPSC lines”), and the 2 parental cell lines from which the iPSCs were derived.
 
Contributor(s) He W, Sun X, Fan Y
Citation missing Has this study been published? Please login to update or notify GEO.
Submission date Jun 07, 2015
Last update date Jul 13, 2018
Contact name Wenyin HE
E-mail(s) 31848346@qq.com
Phone 8620-81297081
Organization name The third affiliated hospital of Guangzhou medical university
Street address No.63, Duobao road
City Guangzhou
State/province Guangdong
ZIP/Postal code 510150
Country China
 
Platforms (2)
GPL16131 [CytoScanHD_Array] Affymetrix CytoScan HD Array
GPL18637 [CytoScan750K_Array] Affymetrix CytoScan 750K Array
Samples (19)
GSM1704973 AF
GSM1704974 FF
GSM1704975 HES17
Relations
BioProject PRJNA286044

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE69632_RAW.tar 2.4 Gb (http)(custom) TAR (of CEL, CYCHP, TXT)
Processed data included within Sample table
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap