NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE73202 Query DataSets for GSE73202
Status Public on Sep 19, 2015
Title Seeking genes responsible for developmental origins of health and disease (DOHaD) from the fetal mouse brain following maternal food deprivation (FD) and food restriction (FR) using OMICS approach
Organism Mus musculus
Experiment type Expression profiling by array
Summary A non-optimal fetal environment is known to cause low birth weight, which has been epidemiologically associated with a greater risk of adult diseases. Maternal undernutrition in animal models has also revealed the increased risks for adult diseases in the offspring. In this study, pregnant mice underwent overnight food deprivation at gestation day (GD)17 or 50% food restriction (FR) from GD10 to GD17, and the fetal brains were examined for global changes in gene expression by DNA microarray analysis utilizing the dye-swap approach. We present here a list of candidate genes from the fetal brain that might be responsible for developmental origins of health and disease.
 
Overall design For food deprivation (FD), the pregnant mice were deprived of the food for overnight before lights were turned off on GD17. For food restriction (FR), pregnant mice were exposed to 50% food restriction (FR) from GD 10 to 17 and caesarean section was performed between 10:00-12:00 AM on GD18. Amount of CE-2 chow supplied to FR group was calculated as 50% of CE-2 consumed by control group each gestation day. Control group was supplied with chow ad libitum. Pregnant mice were sacrificed by cervical dislocation, and the fetuses were taken out and anesthetized on ice cold phosphate-buffered saline. The fetuses were dissected under a dissection microscope, and fetal tissues are carefully removed avoiding any other tissues contamination. The brain was collected from control (n=5) and FD (n=5) or FR (n=5) fetuses, and immediately frozen by immersion in liquid nitrogen. For DNA microarray analyses, the total RNA was extracted, quality and quantity determined, and total RNA from each sample (control and treatment) in each group was pooled, followed by established protocols for genome wide expression changes for both FD and FR samples using a 60-mer probes (4 x 44K (41,090 gene probes), mouse whole genome, Agilent) DNA chip by the dye-swap approach.
 
Contributor(s) Rakwal R, Shibato J, Ogawa T, Saito T, Tamura G, Shioda S
Citation missing Has this study been published? Please login to update or notify GEO.
Submission date Sep 18, 2015
Last update date May 10, 2018
Contact name RANDEEP RAKWAL
E-mail(s) plantproteomics@gmail.com
Phone +81-(0)90-1853-7875
Organization name University of Tsukuba
Department Institute of Health and Sport Sciences
Lab GSI 403
Street address 1-1-1 Tennodai
City Tsukuba
State/province Ibaraki
ZIP/Postal code 305-8574
Country Japan
 
Platforms (1)
GPL4134 Agilent-014868 Whole Mouse Genome Microarray 4x44K G4122F (Feature Number version)
Samples (4)
GSM1888492 FD Fetus Brain 1
GSM1888493 FD Fetus Brain 2
GSM1888494 FR Fetus Brain 1
Relations
BioProject PRJNA296364

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE73202_RAW.tar 68.8 Mb (http)(custom) TAR (of TXT)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap