NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE75047 Query DataSets for GSE75047
Status Public on Nov 20, 2015
Title Enhanced Phospholipase A2 group 3 expression by oxidative stress decreases the insulin-degrading enzyme
Organism Mus musculus
Experiment type Expression profiling by array
Summary Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.
 
Overall design Gene expression in cerebral cortex and cerebellum of mice were determined using Agilent chips. To ensure higher quality results in gene expression data, we conducted microarrays on 4 mice per group. Young mice were 2 months old and the other aged mice were 29 months old at the time of use. Data were standardized using global normalization and pro-cessed by R-program. An absolute fold change threshold of greater than 1.5 was required to be considered for further analyses. Expression values were in log2 scale.
 
Contributor(s) Yui D, Nishida Y, Nishina T, Mogushi K, Tajiri M, Ishibashi S, Ajioka I, Ishikawa K, Mizusawa H, Murayama S, Yokota T
Citation(s) 26637123
Submission date Nov 16, 2015
Last update date Feb 02, 2018
Contact name Kaoru Mogushi
E-mail(s) mogushi-k@umin.ac.jp
Phone +81-3-5802-1797
Organization name Juntendo University
Department Intractable Disease Research Center
Street address 2-1-1 Hongo
City Bunkyo-ku
State/province Tokyo
ZIP/Postal code 113-8421
Country Japan
 
Platforms (1)
GPL10787 Agilent-028005 SurePrint G3 Mouse GE 8x60K Microarray (Probe Name version)
Samples (40)
GSM1941427 WT_2Mo_Cortex_rep1
GSM1941428 WT_2Mo_Cortex_rep2
GSM1941429 WT_2Mo_Cortex_rep3
Relations
BioProject PRJNA302933

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE75047_RAW.tar 470.3 Mb (http)(custom) TAR (of TXT)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap