U.S. flag

An official website of the United States government

GTR Home > Conditions/Phenotypes

Refine your search

Results: 1 to 20 of 281

1.

Ceroid lipofuscinosis, neuronal, 6A

Neuronal ceroid lipofuscinosis-6A (CLN6A) is an autosomal recessive neurodegenerative disorder with a variable age at onset in the first years of life after normal early development. Affected individuals have progressive decline of neurologic function, including visual deterioration in most, cognitive impairment, loss of motor function, and seizures. As with all CLNs, CLN6A is characterized pathologically by the intracellular accumulation of autofluorescent lipopigment storage material in different patterns ultrastructurally. The lipopigment patterns observed most often in CLN6A comprises mixed combinations of 'curvilinear' and 'fingerprint' profiles (summary by Sharp et al., 2003; Mole et al., 2005). For a discussion of genetic heterogeneity of CLN, see CLN1 (256730). [from OMIM]

2.

Alpha-N-acetylgalactosaminidase deficiency type 3

A rare clinically heterogeneous type of NAGA deficiency with developmental, neurologic and psychiatric manifestations presenting at an intermediate age. [from ORDO]

3.

Mitochondrial complex IV deficiency, nuclear type 1

Mitochondrial complex IV deficiency nuclear type 1 (MC4DN1) is an autosomal recessive metabolic disorder characterized by rapidly progressive neurodegeneration and encephalopathy with loss of motor and cognitive skills between about 5 and 18 months of age after normal early development. Affected individuals show hypotonia, failure to thrive, loss of the ability to sit or walk, poor communication, and poor eye contact. Other features may include oculomotor abnormalities, including slow saccades, strabismus, ophthalmoplegia, and nystagmus, as well as deafness, apneic episodes, ataxia, tremor, and brisk tendon reflexes. Brain imaging shows bilateral symmetric lesions in the basal ganglia, consistent with a clinical diagnosis of Leigh syndrome (see 256000). Some patients may also have abnormalities in the brainstem and cerebellum. Laboratory studies usually show increased serum and CSF lactate and decreased levels and activity of mitochondrial respiratory complex IV in patient tissues. There is phenotypic variability, but death in childhood, often due to central respiratory failure, is common (summary by Tiranti et al., 1998; Tiranti et al., 1999; Teraoka et al., 1999; Poyau et al., 2000) Genetic Heterogeneity of Mitochondrial Complex IV Deficiency Most isolated COX deficiencies are inherited as autosomal recessive disorders caused by mutations in nuclear-encoded genes; mutations in the mtDNA-encoded COX subunit genes are relatively rare (Shoubridge, 2001; Sacconi et al., 2003). Mitochondrial complex IV deficiency caused by mutation in nuclear-encoded genes, in addition to MC4DN1, include MC4DN2 (604377), caused by mutation in the SCO2 gene (604272); MC4DN3 (619046), caused by mutation in the COX10 gene (602125); MC4DN4 (619048), caused by mutation in the SCO1 gene (603664); MC4DN5 (220111), caused by mutation in the LRPPRC gene (607544); MC4DN6 (615119), caused by mutation in the COX15 gene (603646); MC4DN7 (619051), caused by mutation in the COX6B1 gene (124089); MC4DN8 (619052), caused by mutation in the TACO1 gene (612958); MC4DN9 (616500), caused by mutation in the COA5 gene (613920); MC4DN10 (619053), caused by mutation in the COX14 gene (614478); MC4DN11 (619054), caused by mutation in the COX20 gene (614698); MC4DN12 (619055), caused by mutation in the PET100 gene (614770); MC4DN13 (616501), caused by mutation in the COA6 gene (614772); MC4DN14 (619058), caused by mutation in the COA3 gene (614775); MC4DN15 (619059), caused by mutation in the COX8A gene (123870); MC4DN16 (619060), caused by mutation in the COX4I1 gene (123864); MC4DN17 (619061), caused by mutation in the APOPT1 gene (616003); MC4DN18 (619062), caused by mutation in the COX6A2 gene (602009); MC4DN19 (619063), caused by mutation in the PET117 gene (614771); MC4DN20 (619064), caused by mutation in the COX5A gene (603773); MC4DN21 (619065), caused by mutation in the COXFA4 gene (603883); MC4DN22 (619355), caused by mutation in the COX16 gene (618064); and MC4DN23 (620275), caused by mutation in the COX11 gene (603648). Mitochondrial complex IV deficiency has been associated with mutations in several mitochondrial genes, including MTCO1 (516030), MTCO2 (516040), MTCO3 (516050), MTTS1 (590080), MTTL1 (590050), and MTTN (590010). [from OMIM]

4.

Mismatch repair cancer syndrome 1

Lynch syndrome is characterized by an increased risk for colorectal cancer (CRC) and cancers of the endometrium, ovary, stomach, small bowel, urinary tract, biliary tract, brain (usually glioblastoma), skin (sebaceous adenomas, sebaceous carcinomas, and keratoacanthomas), pancreas, and prostate. Cancer risks and age of onset vary depending on the associated gene. Several other cancer types have been reported to occur in individuals with Lynch syndrome (e.g., breast, sarcomas, adrenocortical carcinoma). However, the data are not sufficient to demonstrate that the risk of developing these cancers is increased in individuals with Lynch syndrome. [from GeneReviews]

5.

Mitochondrial DNA depletion syndrome 3 (hepatocerebral type)

The two forms of deoxyguanosine kinase (DGUOK) deficiency are a neonatal multisystem disorder and an isolated hepatic disorder that presents later in infancy or childhood. The majority of affected individuals have the multisystem illness with hepatic disease (jaundice, cholestasis, hepatomegaly, and elevated transaminases) and neurologic manifestations (hypotonia, nystagmus, and psychomotor retardation) evident within weeks of birth. Those with isolated liver disease may also have renal involvement and some later develop mild hypotonia. Progressive hepatic disease is the most common cause of death in both forms. [from GeneReviews]

6.

Charcot-Marie-Tooth disease type 2A2

MFN2 hereditary motor and sensory neuropathy (MFN2-HMSN) is a classic axonal peripheral sensorimotor neuropathy, inherited in either an autosomal dominant (AD) manner (~90%) or an autosomal recessive (AR) manner (~10%). MFN2-HMSN is characterized by more severe involvement of the lower extremities than the upper extremities, distal upper-extremity involvement as the neuropathy progresses, more prominent motor deficits than sensory deficits, and normal (>42 m/s) or only slightly decreased nerve conduction velocities (NCVs). Postural tremor is common. Median onset is age 12 years in the AD form and age eight years in the AR form. The prevalence of optic atrophy is approximately 7% in the AD form and approximately 20% in the AR form. [from GeneReviews]

7.

X-linked sideroblastic anemia 1

X-linked sideroblastic anemia is an inherited disorder that prevents developing red blood cells (erythroblasts) from making enough hemoglobin, which is the protein that carries oxygen in the blood. People with X-linked sideroblastic anemia have mature red blood cells that are smaller than normal (microcytic) and appear pale (hypochromic) because of the shortage of hemoglobin. This disorder also leads to an abnormal accumulation of iron in red blood cells. The iron-loaded erythroblasts, which are present in bone marrow, are called ring sideroblasts. These abnormal cells give the condition its name.\n\nThe signs and symptoms of X-linked sideroblastic anemia result from a combination of reduced hemoglobin and an overload of iron. They range from mild to severe and most often appear in young adulthood. Common features include fatigue, dizziness, a rapid heartbeat, pale skin, and an enlarged liver and spleen (hepatosplenomegaly). Over time, severe medical problems such as heart disease and liver damage (cirrhosis) can result from the buildup of excess iron in these organs. [from MedlinePlus Genetics]

8.

Lynch syndrome

Lynch syndrome is characterized by an increased risk for colorectal cancer (CRC) and cancers of the endometrium, ovary, stomach, small bowel, urinary tract, biliary tract, brain (usually glioblastoma), skin (sebaceous adenomas, sebaceous carcinomas, and keratoacanthomas), pancreas, and prostate. Cancer risks and age of onset vary depending on the associated gene. Several other cancer types have been reported to occur in individuals with Lynch syndrome (e.g., breast, sarcomas, adrenocortical carcinoma). However, the data are not sufficient to demonstrate that the risk of developing these cancers is increased in individuals with Lynch syndrome. [from GeneReviews]

9.

Mitochondrial DNA depletion syndrome 1

Mitochondrial neurogastrointestinal encephalopathy (MNGIE) disease is characterized by progressive gastrointestinal dysmotility (manifesting as early satiety, nausea, dysphagia, gastroesophageal reflux, postprandial emesis, episodic abdominal pain and/or distention, and diarrhea); cachexia; ptosis/ophthalmoplegia or ophthalmoparesis; leukoencephalopathy; and demyelinating peripheral neuropathy (manifesting as paresthesias (tingling, numbness, and pain) and symmetric and distal weakness more prominently affecting the lower extremities). The order in which manifestations appear is unpredictable. Onset is usually between the first and fifth decades; in about 60% of individuals, symptoms begin before age 20 years. [from GeneReviews]

10.

Familial colorectal cancer

Familial colon cancer is a cluster of colon cancer within a family. Most cases of colon cancer occur sporadically in people with little to no family history of the condition. Approximately 3-5% of colon cancer is considered 'hereditary' and is thought to be caused by an inherited predisposition tocolon cancer that is passed down through a family in an autosomal dominant or autosomal recessive manner. In some of these families, the underlying genetic cause is not known; however, many of these cases are caused by changes (mutations) in the APC , MYH , MLH1 , MSH2 , MSH6 , PMS2 , EPCAM , PTEN , STK11 , SMAD4 , BMPR1A , NTHL1 , POLE , and POLD1 genes (which are associated with hereditary cancer syndromes). An additional 10-30% of people diagnosed with colon cancer have a significant family history of the condition but have no identifiable mutation in a gene known to cause a hereditary predisposition to colon cancer. These clusters of colon cancer are likely due to a combination of gene(s) and other shared factors such as environment and lifestyle. High-risk cancer screening and other preventative measures such as prophylactic surgeries are typically recommended in people who have an increased risk for colon cancer based on their personal and/or family histories. [from MONDO]

11.

Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 3

Any autosomal recessive progressive external ophthalmoplegia in which the cause of the disease is a mutation in the TK2 gene. [from MONDO]

12.

Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 4

Autosomal recessive progressive external ophthalmoplegia with mitochondrial DNA deletions-4 (PEOB4) is characterized by adult onset of eye muscle weakness and proximal limb muscle weakness associated with deletions of mtDNA on skeletal muscle biopsy, which results from defective mtDNA replication in post-mitotic muscle tissue. Additional features are more variable (summary by Ronchi et al., 2012). For a discussion of genetic heterogeneity of autosomal recessive PEO, see PEOB1 (258450). [from OMIM]

13.

Mitochondrial DNA depletion syndrome 12A (cardiomyopathic type), autosomal dominant

MTDPS12A is characterized by severe hypotonia due to mitochondrial dysfunction apparent at birth. Affected infants have respiratory insufficiency requiring mechanical ventilation and have poor or no motor development. Many die in infancy, and those that survive have profound hypotonia with significant muscle weakness and inability to walk independently. Some patients develop hypertrophic cardiomyopathy. Muscle samples show mtDNA depletion and severe combined mitochondrial respiratory chain deficiencies (summary by Thompson et al., 2016). For a discussion of genetic heterogeneity of mtDNA depletion syndromes, see MTDPS1 (603041). [from OMIM]

14.

Congenital hyperammonemia, type I

Carbamoyl phosphate synthetase I deficiency is an autosomal recessive inborn error of metabolism of the urea cycle which causes hyperammonemia. There are 2 main forms: a lethal neonatal type and a less severe, delayed-onset type (summary by Klaus et al., 2009). Urea cycle disorders are characterized by the triad of hyperammonemia, encephalopathy, and respiratory alkalosis. Five disorders involving different defects in the biosynthesis of the enzymes of the urea cycle have been described: ornithine transcarbamylase deficiency (311250), carbamyl phosphate synthetase deficiency, argininosuccinate synthetase deficiency, or citrullinemia (215700), argininosuccinate lyase deficiency (207900), and arginase deficiency (207800). [from OMIM]

15.

Retinitis pigmentosa 73

Any retinitis pigmentosa in which the cause of the disease is a mutation in the HGSNAT gene. [from MONDO]

16.

Charcot-Marie-Tooth disease axonal type 2U

Charcot-Marie-Tooth disease type 2U (CMT2U) is an autosomal dominant neurologic disorder characterized by late-adult onset of distal sensory impairment resulting in distal muscle weakness and atrophy affecting the upper and lower limbs. The disorder is slowly progressive (summary by Gonzalez et al., 2013). For a phenotypic description and a discussion of genetic heterogeneity of axonal CMT, see CMT2A1 (118210). [from OMIM]

17.

Charcot-Marie-Tooth disease type 4

Charcot-Marie-Tooth disease type 4 (CMT4) belongs to the genetically heterogeneous group of CMT peripheral sensorimotor polyneuropathy diseases. Type 4 is less common and often limited to certain ethnic groups. Patients present with the typical CMT phenotype along with typical features of progressive, distally accentuated weakness and atrophy of muscles innervated by the peroneal nerve in the lower limbs, followed by weakness and atrophy of hands, sensory loss, and characteristic foot abnormalities. [from SNOMEDCT_US]

18.

Mitochondrial DNA depletion syndrome 14 (cardioencephalomyopathic type)

Any mitochondrial DNA depletion syndrome in which the cause of the disease is a mutation in the OPA1 gene. [from MONDO]

20.

Beta-D-mannosidosis

Beta-mannosidosis is an autosomal recessive lysosomal storage disease of glycoprotein catabolism caused by a deficiency of lysosomal beta-mannosidase activity. The most severely affected patients show developmental delay and mental retardation, but there are differing levels of severity and some patients may have comparatively mild disease (Bedilu et al., 2002) The disorder was first described in goats (Jones and Dawson, 1981), who have a more severe neurodegenerative disorder than that seen in humans. [from OMIM]

Results: 1 to 20 of 281

IMPORTANT NOTE: NIH does not independently verify information submitted to the GTR; it relies on submitters to provide information that is accurate and not misleading. NIH makes no endorsements of tests or laboratories listed in the GTR. GTR is not a substitute for medical advice. Patients and consumers with specific questions about a genetic test should contact a health care provider or a genetics professional.