U.S. flag

An official website of the United States government

GTR Home > Tests > Lysosomal Disorders NGS Panel

Indication

This is a clinical test intended for Help: Mutation Confirmation, Diagnosis

Clinical summary

Help

Imported from OMIM

Type 2 diabetes mellitus is distinct from maturity-onset diabetes of the young (see 606391) in that it is polygenic, characterized by gene-gene and gene-environment interactions with onset in adulthood, usually at age 40 to 60 but occasionally in adolescence if a person is obese. The pedigrees are rarely multigenerational. The penetrance is variable, possibly 10 to 40% (Fajans et al., 2001). Persons with type 2 diabetes usually have an obese body habitus and manifestations of the so-called metabolic syndrome (see 605552), which is characterized by diabetes, insulin resistance, hypertension, and hypertriglyceridemia. Genetic Heterogeneity of Susceptibility to Type 2 Diabetes Susceptibility to T2D1 (601283) is conferred by variation in the calpain-10 gene (CAPN10; 605286) on chromosome 2q37. The T2D2 locus (601407) on chromosome 12q was found in a Finnish population. The T2D3 locus (603694) maps to chromosome 20. The T2D4 locus (608036) maps to chromosome 5q34-q35. Susceptibility to T2D5 (616087) is conferred by variation in the TBC1D4 gene (612465) on chromosome 13q22. A mutation has been observed in hepatocyte nuclear factor-4-alpha (HNF4A; 600281.0004) in a French family with NIDDM of late onset. Mutations in the NEUROD1 gene (601724) on chromosome 2q32 were found to cause type II diabetes mellitus in 2 families. Mutation in the GLUT2 glucose transporter was associated with NIDDM in 1 patient (138160.0001). Mutation in the MAPK8IP1 gene, which encodes the islet-brain-1 protein, was found in a family with type II diabetes in individuals in 4 successive generations (604641.0001). Polymorphism in the KCNJ11 gene (600937.0014) confers susceptibility. In French white families, Vionnet et al. (2000) found evidence for a susceptibility locus for type II diabetes on 3q27-qter. They confirmed the diabetes susceptibility locus on 1q21-q24 reported by Elbein et al. (1999) in whites and by Hanson et al. (1998) in Pima Indians. A mutation in the GPD2 gene (138430.0001) on chromosome 2q24.1, encoding mitochondrial glycerophosphate dehydrogenase, was found in a patient with type II diabetes mellitus and in his glucose-intolerant half sister. Mutations in the PAX4 gene (167413) have been identified in patients with type II diabetes. Triggs-Raine et al. (2002) stated that in the Oji-Cree, a gly319-to-ser change in HNF1-alpha (142410.0008) behaves as a susceptibility allele for type II diabetes. Mutation in the HNF1B gene (189907.0007) was found in 2 Japanese patients with typical late-onset type II diabetes. Mutations in the IRS1 gene (147545) have been found in patients with type II diabetes. A missense mutation in the AKT2 gene (164731.0001) caused autosomal dominant type II diabetes in 1 family. A (single-nucleotide polymorphism) SNP in the 3-prime untranslated region of the resistin gene (605565.0001) was associated with susceptibility to diabetes and to insulin resistance-related hypertension in Chinese subjects. Susceptibility to insulin resistance has been associated with polymorphism in the TCF1 (142410.0011), PPP1R3A (600917.0001), PTPN1 (176885.0001), ENPP1 (173335.0006), IRS1 (147545.0002), and EPHX2 (132811.0001) genes. The K121Q polymorphism of ENPP1 (173335.0006) is associated with susceptibility to type II diabetes; a haplotype defined by 3 SNPs of this gene, including K121Q, is associated with obesity, glucose intolerance, and type II diabetes. A SNP in the promoter region of the hepatic lipase gene (151670.0004) predicts conversion from impaired glucose tolerance to type II diabetes. Variants of transcription factor 7-like-2 (TCF7L2; 602228.0001), located on 10q, have also been found to confer risk of type II diabetes. A common sequence variant, rs10811661, on chromosome 9p21 near the CDKN2A (600160) and CDKN2B (600431) genes has been associated with risk of type II diabetes. Variation in the PPARG gene (601487) has been associated with risk of type 2 diabetes. A promoter polymorphism in the IL6 gene (147620) is associated with susceptibility to NIDDM. Variation in the KCNJ15 gene (602106) has been associated with T2DM in lean Asians. Variation in the SLC30A8 gene (611145) has been associated with susceptibility to T2D. Variation in the HMGA1 gene (600701.0001) is associated with an increased risk of type II diabetes. Mutation in the MTNR1B gene (600804) is associated with susceptibility to type 2 diabetes. Protection Against Type 2 Diabetes Mellitus Protein-truncating variants in the SLC30A8 (611145) have been associated with a reduced risk for T2D.

Clinical features

Help

Imported from Human Phenotype Ontology (HPO)

  • Type II diabetes mellitus
  • Insulin resistance
  • Increased waist to hip ratio

Inheritance pattern

Help

Autosomal dominant inheritance

Conditions tested

Target population

Help

Not provided

Clinical validity

Help

Not provided

Clinical utility

Help

Not provided

Practice guidelines

  • NICE, 2023
    UK NICE Guidance, Clinical Guideline CG181, Cardiovascular disease: risk assessment and reduction, including lipid modification, 2023
  • NICE, 2022
    UK NICE Guideline NG18, Diabetes (type 1 and type 2) in children and young people: diagnosis and management
  • NICE, 2022
    UK NICE Guideline NG28, Type 2 diabetes in adults: management, 2022
  • NICE, 2022
    UK NICE Guideline NG136, Hypertension in adults: diagnosis and management, 2022
  • NICE, 2020
    UK NICE Guideline NG3, Diabetes in pregnancy: management from preconception to the postnatal period
  • NICE, 2019
    UK NICE Guideline NG19, Diabetic foot problems: prevention and management, 2019

IMPORTANT NOTE: NIH does not independently verify information submitted to the GTR; it relies on submitters to provide information that is accurate and not misleading. NIH makes no endorsements of tests or laboratories listed in the GTR. GTR is not a substitute for medical advice. Patients and consumers with specific questions about a genetic test should contact a health care provider or a genetics professional.