U.S. flag

An official website of the United States government

GTR Home > Tests > Dystonia and Parkinsonism Panel

Indication

This is a clinical test intended for Help: Diagnosis

Clinical summary

Help

Imported from OMIM

Parkinson disease (PD) was first described by James Parkinson in 1817. It is the second most common neurodegenerative disorder after Alzheimer disease (AD; 104300), affecting approximately 1% of the population over age 50 (Polymeropoulos et al., 1996). Reviews Warner and Schapira (2003) reviewed the genetic and environmental causes of Parkinson disease. Feany (2004) reviewed the genetics of Parkinson disease and provided a speculative model of interactions among proteins implicated in PD. Lees et al. (2009) provided a review of Parkinson disease, with emphasis on diagnosis, neuropathology, and treatment. Genetic Heterogeneity of Parkinson Disease Several loci for autosomal dominant Parkinson disease have been identified, including PARK1 (168601) and PARK4, caused by mutation in or triplication of the alpha-synuclein gene (SNCA; 163890), respectively, on 4q22; PARK5 (191342), caused by mutation in the UCHL1 gene on 4p13; PARK8 (607060), caused by mutation in the LRRK2 gene (609007) on 12q12; PARK11 (607688), caused by mutation in the GIGYF2 gene (612003) on 2q37; PARK13 (610297), caused by mutation in the HTRA2 gene (606441) on 2p13; PARK17 (614203), caused by mutation in the VPS35 gene (601501) on 16q11; PARK18 (614251), caused by mutation in the EIF4G1 gene (600495) on 3q27; PARK22 (616710), caused by mutation in the CHCHD2 gene (616244) on 7p11; and PARK24 (619491), caused by mutation in the PSAP gene (176801) on 10q22. Several loci for autosomal recessive early-onset Parkinson disease have been identified: PARK2 (600116), caused by mutation in the gene encoding parkin (PRKN, PARK2; 602544) on 6q26; PARK6 (605909), caused by mutation in the PINK1 gene (608309) on 1p36; PARK7 (606324), caused by mutation in the DJ1 gene (PARK7; 602533) on 1p36; PARK14 (612953), caused by mutation in the PLA2G6 gene (603604) on 22q13; PARK15 (260300), caused by mutation in the FBXO7 gene (605648) on 22q12-q13; PARK19A (615528) and PARK19B (see 615528), caused by mutation in the DNAJC6 gene (608375) on 1p32; PARK20 (615530), caused by mutation in the SYNJ1 gene (604297) on 21q22; and PARK23 (616840), caused by mutation in the VPS13C gene (608879) on 15q22; and PARK25 (620482), caused by mutation in the PTPA gene (600756) on 9q34. PARK3 (602404) has been mapped to chromosome 2p13; PARK10 (606852) has been mapped to chromosome 1p34-p32; PARK16 (613164) has been mapped to chromosome 1q32. See also PARK21 (616361). A locus on the X chromosome has been identified (PARK12; 300557). There is also evidence that mitochondrial mutations may cause or contribute to Parkinson disease (see 556500). Susceptibility to the development of the more common late-onset form of Parkinson disease has been associated with polymorphisms or mutations in several genes, including GBA (606463), MAPT (157140), MC1R (155555), ADH1C (103730), and genes at the HLA locus (see, e.g., HLA-DRA, 142860). Each of these risk factors independently may have a modest effect on disease development, but together may have a substantial cumulative effect (Hamza et al., 2010). Susceptibility to PD may also be conferred by expanded trinucleotide repeats in several genes causing other neurologic disorders usually characterized by spinocerebellar ataxia (SCA), including the ATXN2 (601517), ATXN3 (607047), TBP (600075), and ATXN8OS (603680) genes.

Conditions tested

Target population

Help

Not provided

Clinical validity

Help

Not provided

Clinical utility

Help

Not provided

Practice guidelines

  • NICE, 2023
    UK NICE Clinical guideline (CG148), Urinary incontinence in neurological disease: assessment and management, 2023

IMPORTANT NOTE: NIH does not independently verify information submitted to the GTR; it relies on submitters to provide information that is accurate and not misleading. NIH makes no endorsements of tests or laboratories listed in the GTR. GTR is not a substitute for medical advice. Patients and consumers with specific questions about a genetic test should contact a health care provider or a genetics professional.