U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Jaundice

MedGen UID:
43987
Concept ID:
C0022346
Sign or Symptom
Synonym: Icterus
SNOMED CT: Icteric (18165001); Jaundiced (18165001); Jaundice (18165001); Icterus (18165001)
 
HPO: HP:0000952

Definition

Yellow pigmentation of the skin due to bilirubin, which in turn is the result of increased bilirubin concentration in the bloodstream. [from HPO]

Conditions with this feature

Hb SS disease
MedGen UID:
287
Concept ID:
C0002895
Disease or Syndrome
Sickle cell disease (SCD) is characterized by intermittent vaso-occlusive events and chronic hemolytic anemia. Vaso-occlusive events result in tissue ischemia leading to acute and chronic pain as well as organ damage that can affect any organ system, including the bones, spleen, liver, brain, lungs, kidneys, and joints. Dactylitis (pain and/or swelling of the hands or feet) is often the earliest manifestation of SCD. In children, the spleen can become engorged with blood cells in a "splenic sequestration." The spleen is particularly vulnerable to infarction and the majority of individuals with SCD who are not on hydroxyurea or transfusion therapy become functionally asplenic in early childhood, increasing their risk for certain types of bacterial infections, primarily encapsulated organisms. Acute chest syndrome (ACS) is a major cause of mortality in SCD. Chronic hemolysis can result in varying degrees of anemia, jaundice, cholelithiasis, and delayed growth and sexual maturation as well as activating pathways that contribute to the pathophysiology directly. Individuals with the highest rates of hemolysis are at higher risk for pulmonary artery hypertension, priapism, and leg ulcers and may be relatively protected from vaso-occlusive pain.
Chédiak-Higashi syndrome
MedGen UID:
3347
Concept ID:
C0007965
Disease or Syndrome
Chediak-Higashi syndrome (CHS) is characterized by partial oculocutaneous albinism, immunodeficiency, and a mild bleeding tendency. Approximately 85% of affected individuals develop the accelerated phase, or hemophagocytic lymphohistiocytosis, a life-threatening, hyperinflammatory condition. All affected individuals including adolescents and adults with atypical CHS and children with classic CHS who have successfully undergone allogenic hematopoietic stem cell transplantation (HSCT) develop neurologic findings during early adulthood.
Crigler-Najjar syndrome type 1
MedGen UID:
41346
Concept ID:
C0010324
Disease or Syndrome
Crigler-Najjar syndrome is a severe condition characterized by high levels of a toxic substance called bilirubin in the blood (hyperbilirubinemia). Bilirubin is produced when red blood cells are broken down. This substance is removed from the body only after it undergoes a chemical reaction in the liver, which converts the toxic form of bilirubin (called unconjugated bilirubin) to a nontoxic form called conjugated bilirubin. People with Crigler-Najjar syndrome have a buildup of unconjugated bilirubin in their blood (unconjugated hyperbilirubinemia).\n\nBilirubin has an orange-yellow tint, and hyperbilirubinemia causes yellowing of the skin and whites of the eyes (jaundice). In Crigler-Najjar syndrome, jaundice is apparent at birth or in infancy. Severe unconjugated hyperbilirubinemia can lead to a condition called kernicterus, which is a form of brain damage caused by the accumulation of unconjugated bilirubin in the brain and nerve tissues. Babies with kernicterus are often extremely tired (lethargic) and may have weak muscle tone (hypotonia). These babies may experience episodes of increased muscle tone (hypertonia) and arching of their backs. Kernicterus can lead to other neurological problems, including involuntary writhing movements of the body (choreoathetosis), hearing problems, or intellectual disability.\n\nCrigler-Najjar syndrome is divided into two types. Type 1 (CN1) is very severe, and affected individuals can die in childhood due to kernicterus, although with proper treatment, they may survive longer. Type 2 (CN2) is less severe. People with CN2 are less likely to develop kernicterus, and most affected individuals survive into adulthood.
Hereditary fructosuria
MedGen UID:
42105
Concept ID:
C0016751
Disease or Syndrome
Following dietary exposure to fructose, sucrose, or sorbitol, untreated hereditary fructose intolerance (HFI) is characterized by metabolic disturbances (hypoglycemia, lactic acidemia, hypophosphatemia, hyperuricemia, hypermagnesemia, hyperalaninemia) and clinical findings (nausea, vomiting, and abdominal distress; chronic growth restriction / failure to thrive). While untreated HFI typically first manifested when fructose- and sucrose-containing foods were introduced in the course of weaning young infants from breast milk, it is now presenting earlier, due to the addition of fructose-containing nutrients in infant formulas. If the infant ingests large quantities of fructose, the infant may acutely develop lethargy, seizures, and/or progressive coma. Untreated HFI may result in renal and hepatic failure. If identified and treated before permanent organ injury occurs, individuals with HFI can experience a normal quality of life and life expectancy.
Gilbert syndrome
MedGen UID:
4891
Concept ID:
C0017551
Disease or Syndrome
The hereditary hyperbilirubinemias (Wolkoff et al., 1983) include (1) those resulting in predominantly unconjugated hyperbilirubinemia: Gilbert or Arias syndrome, Crigler-Najjar syndrome type I (218800), and Crigler-Najjar syndrome type II (606785); and (2) those resulting in predominantly conjugated hyperbilirubinemia: Dubin-Johnson syndrome (237500), Rotor syndrome (237450), and several forms of intrahepatic cholestasis (147480, 211600, 214950, 243300). Detailed studies show that patients with Gilbert syndrome have reduced activity of bilirubin glucuronosyltransferase (Bosma et al., 1995, Koiwai et al., 1995). Genetic Heterogeneity of Hyperbilirubinemia See also Crigler-Najjar syndrome type I (HBLRCN1; 218800), Crigler-Najjar syndrome type II (HBLRCN2; 606785), and transient familial neonatal hyperbilirubinemia (HBLRTFN; 237900), all caused by mutation in the UGT1A1 gene (191740) on chromosome 2q37; Dubin-Johnson syndrome (DJS, HBLRDJ; 237500), caused by mutation in the ABCC2 gene (601107) on chromosome 10q24; and Rotor syndrome (HBLRR; 237450), caused by digenic mutation in the SLCO1B1 (604843) and SLCOB3 (605495) genes, both on chromosome 12p.
Glycogen storage disease, type VII
MedGen UID:
5342
Concept ID:
C0017926
Disease or Syndrome
Glycogen storage disease VII is an autosomal recessive metabolic disorder characterized clinically by exercise intolerance, muscle cramping, exertional myopathy, and compensated hemolysis. Myoglobinuria may also occur. The deficiency of the muscle isoform of PFK results in a total and partial loss of muscle and red cell PFK activity, respectively. Raben and Sherman (1995) noted that not all patients with GSD VII seek medical care because in some cases it is a relatively mild disorder.
Dubin-Johnson syndrome
MedGen UID:
7181
Concept ID:
C0022350
Disease or Syndrome
Dubin-Johnson syndrome is an autosomal recessive disorder characterized by conjugated hyperbilirubinemia, an increase in the urinary excretion of coproporphyrin isomer I, deposition of melanin-like pigment in hepatocytes, and prolonged retention of sulfobromophthalein, but otherwise normal liver function (summary by Wada et al., 1998).
Letterer-Siwe disease
MedGen UID:
7311
Concept ID:
C0023381
Disease or Syndrome
A multifocal, multisystem form of Langerhans-cell histiocytosis. There is involvement of multiple organ systems including the bones, skin, liver, spleen, and lymph nodes. Patients are usually infants presenting with fever, hepatosplenomegaly, lymphadenopathy, bone and skin lesions, and pancytopenia.
Hyperlipoproteinemia, type I
MedGen UID:
7352
Concept ID:
C0023817
Disease or Syndrome
Familial lipoprotein lipase (LPL) deficiency usually presents in childhood and is characterized by very severe hypertriglyceridemia with episodes of abdominal pain, recurrent acute pancreatitis, eruptive cutaneous xanthomata, and hepatosplenomegaly. Clearance of chylomicrons from the plasma is impaired, causing triglycerides to accumulate in plasma and the plasma to have a milky (lactescent or lipemic) appearance. Symptoms usually resolve with restriction of total dietary fat to =20 g/day.
Reticuloendotheliosis, X-linked
MedGen UID:
19757
Concept ID:
C0035288
Neoplastic Process
A greater than normal number of blood cells in the reticuloendothelial system.
Hereditary coproporphyria
MedGen UID:
57931
Concept ID:
C0162531
Disease or Syndrome
Hereditary coproporphyria (HCP) is an acute (hepatic) porphyria in which the acute symptoms are neurovisceral and occur in discrete episodes. Attacks typically start in the abdomen with low-grade pain that slowly increases over a period of days (not hours) with nausea progressing to vomiting. In some individuals, the pain is predominantly in the back or extremities. When an acute attack is untreated, a motor neuropathy may develop over a period of days or a few weeks. The neuropathy first appears as weakness proximally in the arms and legs, then progresses distally to involve the hands and feet. Some individuals experience respiratory insufficiency due to loss of innervation of the diaphragm and muscles of respiration. Acute attacks are associated commonly with use of certain medications, caloric deprivation, and changes in female reproductive hormones. About 20% of those with an acute attack also experience photosensitivity associated with bullae and skin fragility.
Rotor syndrome
MedGen UID:
67435
Concept ID:
C0220991
Disease or Syndrome
Rotor syndrome is characterized by mild conjugated and unconjugated hyperbilirubinemia that usually begins shortly after birth or in childhood. Jaundice may be intermittent. Conjunctival icterus may be the only clinical manifestation.
Halothane hepatitis
MedGen UID:
66842
Concept ID:
C0241913
Disease or Syndrome
Cholestasis-edema syndrome, Norwegian type
MedGen UID:
78658
Concept ID:
C0268314
Disease or Syndrome
Cholestasis-lymphedema syndrome is a rare genetic disorder characterized by neonatal intrahepatic cholestasis, often lessening and becoming intermittent with age, and severe chronic lymphedema which mainly affects the lower limbs. Patients often present with fat malabsorption leading to failure to thrive, fat soluble vitamin deficiency with bleeding, rickets, and neuropathy. In 25% of cases, cirrhosis occurs during childhood or later in life.
Hydroxykynureninuria
MedGen UID:
78681
Concept ID:
C0268474
Disease or Syndrome
Hydroxykynureninuria, also known as xanthurenicaciduria, is an autosomal recessive condition characterized by high urinary excretion of kynurenine (KYN), xanthurenic acid (XA) and 3-hydroxykynurenine (3-OHKYN), with no detectable anthranilic acid (AA) or 3-hydroxyanthranilic acid (3-OHAA) (Christensen et al., 2007).
Multiple acyl-CoA dehydrogenase deficiency
MedGen UID:
75696
Concept ID:
C0268596
Disease or Syndrome
Multiple acyl-CoA dehydrogenase deficiency (MADD) represents a clinical spectrum in which presentations can be divided into type I (neonatal onset with congenital anomalies), type II (neonatal onset without congenital anomalies), and type III (late onset). Individuals with type I or II MADD typically become symptomatic in the neonatal period with severe metabolic acidosis, which may be accompanied by profound hypoglycemia and hyperammonemia. Many affected individuals die in the newborn period despite metabolic treatment. In those who survive the neonatal period, recurrent metabolic decompensation resembling Reye syndrome and the development of hypertrophic cardiomyopathy can occur. Congenital anomalies may include dysmorphic facial features, large cystic kidneys, hypospadias and chordee in males, and neuronal migration defects (heterotopias) on brain MRI. Individuals with type III MADD, the most common presentation, can present from infancy to adulthood. The most common symptoms are muscle weakness, exercise intolerance, and/or muscle pain, although metabolic decompensation with episodes of rhabdomyolysis can also be seen. Rarely, individuals with late-onset MADD (type III) may develop severe sensory neuropathy in addition to proximal myopathy.
Lucey-Driscoll syndrome
MedGen UID:
75718
Concept ID:
C0270210
Disease or Syndrome
A rare genetic hepatic disease characterized by very high serum bilirubin levels in a newborn, clinically presenting as jaundice during the first few days of life. The condition is usually self-resolving, although in some cases it can lead to kernicterus with corresponding symptoms (including lethargy, high-pitched crying, hypotonia, missing reflexes, vomiting, or seizures, among others), which may result in chronic disability and even death.
HNSHA due to aldolase A deficiency
MedGen UID:
82895
Concept ID:
C0272066
Disease or Syndrome
Aldolase A deficiency is an autosomal recessive disorder associated with hereditary hemolytic anemia (Kishi et al., 1987).
Pyruvate kinase deficiency of red cells
MedGen UID:
473069
Concept ID:
C0340968
Disease or Syndrome
Red cell pyruvate kinase deficiency is the most common cause of hereditary nonspherocytic hemolytic anemia. PK deficiency is also the most frequent enzyme abnormality of the glycolytic pathway (Zanella et al., 2005).
Visceral steatosis, congenital
MedGen UID:
90962
Concept ID:
C0341447
Pathologic Function
Congenital isolated adrenocorticotropic hormone deficiency
MedGen UID:
137968
Concept ID:
C0342388
Disease or Syndrome
Congenital isolated adrenocorticotropic hormone deficiency is characterized by severe hypoglycemia in the neonatal period, associated with seizures in about half of cases; prolonged cholestatic jaundice; and very low plasma ACTH levels with no significant response to CRH (122560). Plasma cortisol levels are also extremely low (Vallette-Kasic et al., 2005). TBX19 is required for initiation of transcription of the POMC gene (176830), which produces the precursor peptide from which ACTH is derived (Lamolet et al., 2001).
Hyperbilirubinemia - conjugated - type III
MedGen UID:
98323
Concept ID:
C0400964
Disease or Syndrome
Reynolds syndrome
MedGen UID:
450547
Concept ID:
C0748397
Disease or Syndrome
An autoimmune disorder characterized by the association of primary biliary cirrhosis with limited cutaneous systemic sclerosis. Onset occurs between 30-65 years. Occurs sporadically, but rare familial cases with an unknown inheritance pattern have been observed. There is no cure and management is mainly supportive.
UDPglucose-4-epimerase deficiency
MedGen UID:
199598
Concept ID:
C0751161
Disease or Syndrome
Epimerase deficiency galactosemia (GALE deficiency galactosemia) is generally considered a continuum comprising several forms: Generalized. Enzyme activity is profoundly decreased in all tissues tested. Peripheral. Enzyme activity is deficient in red blood cells (RBC) and circulating white blood cells, but normal or near normal in all other tissues. Intermediate. Enzyme activity is deficient in red blood cells and circulating white blood cells and less than 50% of normal levels in other cells tested. Infants with generalized epimerase deficiency galactosemia develop clinical findings on a regular milk diet (which contains lactose, a disaccharide of galactose and glucose); manifestations include hypotonia, poor feeding, vomiting, weight loss, jaundice, hepatomegaly, liver dysfunction, aminoaciduria, and cataracts. Prompt removal of galactose/lactose from their diet resolves or prevents these acute symptoms. Longer-term features that may be seen in those with generalized epimerase deficiency include short stature, developmental delay, sensorineural hearing loss, and skeletal anomalies. In contrast, neonates with the peripheral or intermediate form generally remain clinically well even on a regular milk diet and are usually only identified by biochemical testing, often in newborn screening programs.
Edinburgh malformation syndrome
MedGen UID:
167084
Concept ID:
C0795933
Disease or Syndrome
A rare genetic lethal multiple congenital anomalies/dysmorphic syndrome characterized by consistently abnormal facial appearance, true or apparent hydrocephalus, motor and cognitive developmental delay, failure to thrive (feeding difficulties, vomiting, chest infections) and death within a few months of birth. Carp mouth, hairiness of the forehead, neonatal hyperbilirubinemia and advanced bone age may also be associated. There have been no further descriptions in the literature since 1991.
Cholestasis-pigmentary retinopathy-cleft palate syndrome
MedGen UID:
208652
Concept ID:
C0795969
Disease or Syndrome
MED12-related disorders include the phenotypes of FG syndrome type 1 (FGS1), Lujan syndrome (LS), X-linked Ohdo syndrome (XLOS), Hardikar syndrome (HS), and nonspecific intellectual disability (NSID). FGS1 and LS share the clinical findings of cognitive impairment, hypotonia, and abnormalities of the corpus callosum. FGS1 is further characterized by absolute or relative macrocephaly, tall forehead, downslanted palpebral fissures, small and simple ears, constipation and/or anal anomalies, broad thumbs and halluces, and characteristic behavior. LS is further characterized by large head, tall thin body habitus, long thin face, prominent nasal bridge, high narrow palate, and short philtrum. Carrier females in families with FGS1 and LS are typically unaffected. XLOS is characterized by intellectual disability, blepharophimosis, and facial coarsening. HS has been described in females with cleft lip and/or cleft palate, biliary and liver anomalies, intestinal malrotation, pigmentary retinopathy, and coarctation of the aorta. Developmental and cognitive concerns have not been reported in females with HS. Pathogenic variants in MED12 have been reported in an increasing number of males and females with NSID, with affected individuals often having clinical features identified in other MED12-related disorders.
Upshaw-Schulman syndrome
MedGen UID:
224783
Concept ID:
C1268935
Disease or Syndrome
Hereditary thrombotic thrombocytopenic purpura (TTP), also known as Upshaw-Schulman syndrome (USS), is a rare autosomal recessive thrombotic microangiopathy (TMA). Clinically, acute phases of TTP are defined by microangiopathic mechanical hemolytic anemia, severe thrombocytopenia, and visceral ischemia. Hereditary TTP makes up 5% of TTP cases and is caused mostly by biallelic mutation in the ADAMTS13 gene, or in very rare cases, by monoallelic ADAMTS13 mutation associated with a cluster of single-nucleotide polymorphisms (SNPs); most cases of all TTP (95%) are acquired via an autoimmune mechanism (see 188030). Hereditary TTP is more frequent among child-onset TTP compared with adult-onset TTP, and its clinical presentation is significantly different as a function of its age of onset. Child-onset TTP usually starts in the neonatal period with hematological features and severe jaundice. In contrast, almost all cases of adult-onset hereditary TTP are unmasked during the first pregnancy of a woman whose disease was silent during childhood (summary by Joly et al., 2018).
Congenital dyserythropoietic anemia, type II
MedGen UID:
266296
Concept ID:
C1306589
Disease or Syndrome
Congenital dyserythropoietic anemia type II (CDA II) is the most common form of CDA (see this term) characterized by anemia, jaundice and splenomegaly and often leading to liver iron overload and gallstones.
Neurofibromatosis-pheochromocytoma-duodenal carcinoid syndrome
MedGen UID:
331696
Concept ID:
C1834232
Disease or Syndrome
Hereditary cryohydrocytosis with reduced stomatin
MedGen UID:
332390
Concept ID:
C1837206
Disease or Syndrome
Stomatin-deficient cryohydrocytosis with neurologic defects is an autosomal dominant disorder characterized by delayed psychomotor development, seizures, cataracts, and pseudohyperkalemia resulting from defects in the red blood cell membrane. The disorder combines the neurologic features of Glut1 deficiency syndrome-1 (GLUT1DS1; 606777), resulting from impaired glucose transport at the blood-brain barrier, and hemolytic anemia/pseudohyperkalemia with stomatocytosis, resulting from a cation leak in erythrocytes (summary by Bawazir et al., 2012). For a discussion of clinical and genetic heterogeneity of red cell stomatocyte disorders, see 194380.
Jaundice, familial obstructive, of infancy
MedGen UID:
326992
Concept ID:
C1839927
Disease or Syndrome
Congenital bile acid synthesis defect 1
MedGen UID:
335883
Concept ID:
C1843116
Disease or Syndrome
Congenital defects of bile acid synthesis are autosomal recessive disorders characterized by neonatal onset of progressive liver disease with cholestatic jaundice and malabsorption of lipids and lipid-soluble vitamins from the gastrointestinal tract resulting from a primary failure to synthesize bile acids. Affected infants show failure to thrive and secondary coagulopathy. In most forms of the disorder, there is a favorable response to oral bile acid therapy (summary by Cheng et al., 2003). Genetic Heterogeneity of Congenital Defects in Bile Acid Synthesis There are several disorders that result from defects in bile acid synthesis. See CBAS2 (235555), caused by mutation in the delta(4)-3-oxosteroid 5-beta-reductase gene (AKR1D1; 604741) on chromosome 7q33; CBAS3 (613812), caused by mutation in the 7-alpha hydroxylase gene (CYP7B1; 603711) on chromosome 8q12; CBAS4 (214950), caused by mutation in the AMACR gene (604489) on chromosome 5p13; CBAS5 (616278), caused by mutation in the ABCD3 gene (170995) on chromosome 1p21; and CBAS6 (617308), caused by mutation in the ACOX2 gene (601641) on chromosome 3p14. See also progressive familial intrahepatic cholestasis (PFIC1; 211600), which has a similar phenotype.
Neonatal ichthyosis-sclerosing cholangitis syndrome
MedGen UID:
334382
Concept ID:
C1843355
Disease or Syndrome
A very rare complex ichthyosis syndrome with characteristics of scalp hypotrichosis, scarring alopecia, ichthyosis and sclerosing cholangitis. The ichthyosis presents with diffuse white scales sparing the skin folds and is accompanied by scalp hypotrichosis, cicatricial alopecia, and sparse eyelashes/eyebrows. Additional manifestations may include oligodontia, hypodontia and enamel dysplasia. All patients present with neonatal sclerosing cholangitis with jaundice and pruritus, hepatomegaly and biochemical cholestasis. Caused by a mutation in the CLDN1 gene on chromosome 3q28 coding for the tight junction protein claudin-1. Autosomal recessive pattern of inheritance.
Niemann-Pick disease, type C2
MedGen UID:
335942
Concept ID:
C1843366
Disease or Syndrome
Niemann-Pick disease type C (NPC) is a slowly progressive lysosomal disorder whose principal manifestations are age dependent. The manifestations in the perinatal period and infancy are predominantly visceral, with hepatosplenomegaly, jaundice, and (in some instances) pulmonary infiltrates. From late infancy onward, the presentation is dominated by neurologic manifestations. The youngest children may present with hypotonia and developmental delay, with the subsequent emergence of ataxia, dysarthria, dysphagia, and, in some individuals, epileptic seizures, dystonia, and gelastic cataplexy. Although cognitive impairment may be subtle at first, it eventually becomes apparent that affected individuals have a progressive dementia. Older teenagers and young adults may present predominantly with apparent early-onset dementia or psychiatric manifestations; however, careful examination usually identifies typical neurologic signs.
Rh-null, regulator type
MedGen UID:
340309
Concept ID:
C1849387
Disease or Syndrome
Navajo neurohepatopathy
MedGen UID:
338045
Concept ID:
C1850406
Disease or Syndrome
MPV17-related mitochondrial DNA (mtDNA) maintenance defect presents in the vast majority of affected individuals as an early-onset encephalohepatopathic (hepatocerebral) disease that is typically associated with mtDNA depletion, particularly in the liver. A later-onset neuromyopathic disease characterized by myopathy and neuropathy, and associated with multiple mtDNA deletions in muscle, has also rarely been described. MPV17-related mtDNA maintenance defect, encephalohepatopathic form is characterized by: Hepatic manifestations (liver dysfunction that typically progresses to liver failure, cholestasis, hepatomegaly, and steatosis); Neurologic involvement (developmental delay, hypotonia, microcephaly, and motor and sensory peripheral neuropathy); Gastrointestinal manifestations (gastrointestinal dysmotility, feeding difficulties, and failure to thrive); and Metabolic derangements (lactic acidosis and hypoglycemia). Less frequent manifestations include renal tubulopathy, nephrocalcinosis, and hypoparathyroidism. Progressive liver disease often leads to death in infancy or early childhood. Hepatocellular carcinoma has been reported.
Lambert syndrome
MedGen UID:
343381
Concept ID:
C1855551
Disease or Syndrome
A very rare syndrome described in four siblings of one French family and with characteristics of branchial dysplasia (malar hypoplasia, macrostomia, preauricular tags and meatal atresia), club feet, inguinal hernia and cholestasis due to paucity of interlobular bile ducts and intellectual deficit.
Congenital bile acid synthesis defect 2
MedGen UID:
383840
Concept ID:
C1856127
Disease or Syndrome
Congenital bile acid synthesis defect type 2 is a disorder characterized by cholestasis, a condition that impairs the production and release of a digestive fluid called bile from liver cells. Bile is used during digestion to absorb fats and fat-soluble vitamins, such as vitamins A, D, E, and K. People with congenital bile acid synthesis defect type 2 cannot produce (synthesize) bile acids, which are a component of bile that stimulate bile flow and help it absorb fats and fat-soluble vitamins. As a result, an abnormal form of bile is produced.\n\nThe signs and symptoms of congenital bile acid synthesis defect type 2 often develop in infancy. Affected infants usually have a failure to gain weight and grow at the expected rate (failure to thrive) and yellowing of the skin and eyes (jaundice) due to impaired bile flow and a buildup of partially formed bile. Excess fat in the feces (steatorrhea) is another feature of congenital bile acid synthesis defect type 2. As the condition progresses, affected individuals can develop liver abnormalities including inflammation or chronic liver disease (cirrhosis). Some individuals with congenital bile acid synthesis defect type 2 cannot absorb certain fat-soluble vitamins, which can result in softening and weakening of the bones (rickets) or problems with blood clotting that lead to prolonged bleeding.\n\nIf left untreated, congenital bile acid synthesis defect type 2 typically leads to cirrhosis and death in childhood.
Dysmyelination with jaundice
MedGen UID:
346526
Concept ID:
C1857143
Disease or Syndrome
Cholestasis with gallstone, ataxia, and visual disturbance
MedGen UID:
347812
Concept ID:
C1859161
Disease or Syndrome
Arthrogryposis, renal dysfunction, and cholestasis 1
MedGen UID:
347219
Concept ID:
C1859722
Disease or Syndrome
Any arthrogryposis-renal dysfunction-cholestasis syndrome in which the cause of the disease is a mutation in the VPS33B gene.
Anemia, nonspherocytic hemolytic, possibly due to defect in porphyrin metabolism
MedGen UID:
395345
Concept ID:
C1859785
Disease or Syndrome
Triosephosphate isomerase deficiency
MedGen UID:
349893
Concept ID:
C1860808
Disease or Syndrome
Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterized by congenital hemolytic anemia, and progressive neuromuscular dysfunction beginning in early childhood. Many patients die from respiratory failure in childhood. The neurologic syndrome is variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Some patients may show additional signs such as dystonic posturing and/or spasticity. Laboratory studies show intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells (summary by Fermo et al., 2010).
Overhydrated hereditary stomatocytosis
MedGen UID:
348876
Concept ID:
C1861455
Disease or Syndrome
Overhydrated hereditary stomatocytosis is a variably compensated macrocytic hemolytic anemia of fluctuating severity, characterized by circulating erythrocytes with slit-like lucencies (stomata) evident on peripheral blood smears. OHST red cells exhibit cation leak, resulting in elevated cell Na+ content with reduced K+ content, with increased ouabain-resistant cation leak fluxes in the presence of presumably compensatory increases in ouabain-sensitive Na(+)-K(+) ATPase activity, and red cell age-dependent loss of stomatin/EBP7.2 (EBP72; 133090) from the erythroid membrane. Clinically, patients with OHST exhibit overhydrated erythrocytes and a temperature-dependent red cell cation leak. The temperature dependence of the leak is 'monotonic' and has a steep slope, reflecting the very large leak at 37 degrees centigrade (summary by Bruce, 2009 and Stewart et al., 2011). For a discussion of clinical and genetic heterogeneity of the hereditary stomatocytoses, see 194380.
Cirrhosis, familial
MedGen UID:
350049
Concept ID:
C1861556
Disease or Syndrome
Cirrhosis in which no causative agent can be identified.
Arteritis, familial granulomatous, with juvenile polyarthritis
MedGen UID:
349529
Concept ID:
C1862510
Disease or Syndrome
Familial hemophagocytic lymphohistiocytosis 2
MedGen UID:
400366
Concept ID:
C1863727
Disease or Syndrome
Familial hemophagocytic lymphohistiocytosis-2 (FHL2) is an autosomal recessive disorder of immune dysregulation with onset in infancy or early childhood. It is characterized clinically by fever, edema, hepatosplenomegaly, and liver dysfunction. Neurologic impairment, seizures, and ataxia are frequent. Laboratory studies show pancytopenia, coagulation abnormalities, hypofibrinogenemia, and hypertriglyceridemia. There is increased production of cytokines, such as gamma-interferon (IFNG; 147570) and TNF-alpha (191160), by hyperactivation and proliferation of T cells and macrophages. Activity of cytotoxic T cells and NK cells is reduced, consistent with a defect in cellular cytotoxicity. Bone marrow, lymph nodes, spleen, and liver show features of hemophagocytosis. Chemotherapy and/or immunosuppressant therapy may result in symptomatic remission, but the disorder is fatal without bone marrow transplantation (summary by Dufourcq-Lagelouse et al., 1999, Stepp et al., 1999, and Molleran Lee et al., 2004). For a general phenotypic description and a discussion of genetic heterogeneity of FHL, see 267700.
Familial hemophagocytic lymphohistiocytosis 4
MedGen UID:
350245
Concept ID:
C1863728
Disease or Syndrome
Hemophagocytic lymphohistiocytosis is a hyperinflammatory disorder clinically diagnosed based on the fulfillment of 5 of 8 criteria, including fever, splenomegaly, bicytopenia, hypertriglyceridemia and/or hypofibrinogenemia, hemophagocytosis, low or absent natural killer (NK) cell activity, hyperferritinemia, and high soluble IL2 receptor levels (IL2R; 147730). The disorder typically presents in infancy or early childhood. Persistent remission is rarely achieved with chemo- or immunotherapy; hematopoietic stem cell transplantation is the only cure (summary by Muller et al., 2014). For a phenotypic description and a discussion of genetic heterogeneity of familial hemophagocytic lymphohistiocytosis (FHL), see 267700.
Progressive familial intrahepatic cholestasis type 3
MedGen UID:
356333
Concept ID:
C1865643
Disease or Syndrome
The signs and symptoms of PFIC2 are typically related to liver disease only; however, these signs and symptoms tend to be more severe than those experienced by people with PFIC1. People with PFIC2 often develop liver failure within the first few years of life. Additionally, affected individuals are at increased risk of developing a type of liver cancer called hepatocellular carcinoma.\n\nIn addition to signs and symptoms related to liver disease, people with PFIC1 may have short stature, deafness, diarrhea, inflammation of the pancreas (pancreatitis), and low levels of fat-soluble vitamins (vitamins A, D, E, and K) in the blood. Affected individuals typically develop liver failure before adulthood.\n\nThere are three known types of PFIC: PFIC1, PFIC2, and PFIC3. The types are also sometimes described as shortages of particular proteins needed for normal liver function. Each type has a different genetic cause.\n\nMost people with PFIC3 have signs and symptoms related to liver disease only. Signs and symptoms of PFIC3 usually do not appear until later in infancy or early childhood; rarely, people are diagnosed in early adulthood. Liver failure can occur in childhood or adulthood in people with PFIC3.\n\nSigns and symptoms of PFIC typically begin in infancy and are related to bile buildup and liver disease. Specifically, affected individuals experience severe itching, yellowing of the skin and whites of the eyes (jaundice), failure to gain weight and grow at the expected rate (failure to thrive), high blood pressure in the vein that supplies blood to the liver (portal hypertension), and an enlarged liver and spleen (hepatosplenomegaly).\n\nProgressive familial intrahepatic cholestasis (PFIC) is a disorder that causes progressive liver disease, which typically leads to liver failure. In people with PFIC, liver cells are less able to secrete a digestive fluid called bile. The buildup of bile in liver cells causes liver disease in affected individuals.
Benign recurrent intrahepatic cholestasis type 2
MedGen UID:
435857
Concept ID:
C2608083
Disease or Syndrome
The phenotypic spectrum of ATP8B1 deficiency ranges from severe through moderate to mild. Severe ATP8B1 deficiency is characterized by infantile-onset cholestasis that progresses to cirrhosis, hepatic failure, and early death. Although mild-to-moderate ATP8B1 deficiency initially was thought to involve intermittent symptomatic cholestasis with a lack of hepatic fibrosis, it is now known that hepatic fibrosis may be present early in the disease course. Furthermore, in some persons with ATP8B1 deficiency the clinical findings can span the phenotypic spectrum, shifting over time from the mild end of the spectrum (episodic cholestasis) to the severe end of the spectrum (persistent cholestasis). Sensorineural hearing loss (SNHL) is common across the phenotypic spectrum.
Low phospholipid associated cholelithiasis
MedGen UID:
760527
Concept ID:
C2609268
Disease or Syndrome
In general, gallbladder disease (GBD) is one of the major digestive diseases. GBD prevalence is particularly high in some minority populations in the United States, including Native and Mexican Americans. Gallstones composed of cholesterol (cholelithiasis) are the common manifestations of GBD in western countries, including the United States. Most people with gallstones remain asymptomatic through their lifetimes; however, it is estimated that approximately 10 to 50% of individuals eventually develop symptoms. Significant risk factors associated with GBD are age, female sex, obesity (especially central obesity), lipids, diet, parity, type 2 diabetes (125853), medications, and Mexican American ethnicity. GBD appears to be strongly related to the metabolic syndrome (605552) and/or its major components, such as hyperinsulinism, dyslipidemia, and abdominal adiposity (Boland et al., 2002; Tsai et al., 2004). Infection, specifically by Helicobacter, has been implicated in cholelithiasis and cholecystitis (Silva et al., 2003; Maurer et al., 2005). Low phospholipid-associated cholelithiasis is a specific form of gallbladder disease characterized by young-adult onset of chronic cholestasis with intrahepatic sludge and cholesterol cholelithiasis. Affected individuals have recurrence of the disorder after cholecystectomy and show a favorable response to treatment with ursodeoxycholic acid (UDCA) (summary by Pasmant et al., 2012). Mutation in the ABCB4 gene can cause a spectrum of related diseases, including the more severe progressive familial intrahepatic cholestasis-3 (PFIC3; 602347), intrahepatic cholestasis of pregnancy-3 (ICP3; 614972), andoral contraceptive-induced cholestasis (OCIC; see 614972). Genetic Heterogeneity of Gallbladder Disease Two major susceptibility loci for symptomatic gallbladder disease have been identified on chromosome 1p in Mexican Americans (GBD2, 609918; GBD3, 609919). In addition, variations in the ABCG8 gene (605460) on chromosome 2p21 confer susceptibility to gallbladder disease (GBD4; 611465).
Hereditary spherocytosis type 1
MedGen UID:
382302
Concept ID:
C2674218
Disease or Syndrome
Any hereditary spherocytosis in which the cause of the disease is a mutation in the ANK1 gene.
Hereditary spherocytosis type 2
MedGen UID:
436112
Concept ID:
C2674219
Disease or Syndrome
People with the mild form may have very mild anemia or sometimes have no symptoms. People with the moderate form typically have anemia, jaundice, and splenomegaly. Many also develop gallstones. The signs and symptoms of moderate hereditary spherocytosis usually appear in childhood. Individuals with the moderate/severe form have all the features of the moderate form but also have severe anemia. Those with the severe form have life-threatening anemia that requires frequent blood transfusions to replenish their red blood cell supply. They also have severe splenomegaly, jaundice, and a high risk for developing gallstones. Some individuals with the severe form have short stature, delayed sexual development, and skeletal abnormalities.\n\nThere are four forms of hereditary spherocytosis, which are distinguished by the severity of signs and symptoms. They are known as the mild form, the moderate form, the moderate/severe form, and the severe form. It is estimated that 20 to 30 percent of people with hereditary spherocytosis have the mild form, 60 to 70 percent have the moderate form, 10 percent have the moderate/severe form, and 3 to 5 percent have the severe form.\n\nHereditary spherocytosis is a condition that affects red blood cells. People with this condition typically experience a shortage of red blood cells (anemia), yellowing of the eyes and skin (jaundice), and an enlarged spleen (splenomegaly). Most newborns with hereditary spherocytosis have severe anemia, although it improves after the first year of life. Splenomegaly can occur anytime from early childhood to adulthood. About half of affected individuals develop hard deposits in the gallbladder called gallstones, which typically occur from late childhood to mid-adulthood.
Pancreatic insufficiency-anemia-hyperostosis syndrome
MedGen UID:
436369
Concept ID:
C2675184
Disease or Syndrome
This syndrome is characterized by exocrine pancreatic insufficiency, dyserythropoietic anemia, and calvarial hyperostosis.
Hereditary spherocytosis type 5
MedGen UID:
436371
Concept ID:
C2675192
Disease or Syndrome
EPB42-related hereditary spherocytosis (EPB42-HS) is a chronic nonimmune hemolytic anemia that is usually of mild-to-moderate severity. EPB42-HS can present with jaundice as early as the first 24 hours of life or can present later in childhood with anemia resulting from a hemolytic crisis or aplastic crisis (usually associated with a viral infection). In addition to the hematologic manifestations, serious complications include splenomegaly, which can become evident in early childhood, and cholelithiasis, which usually becomes evident in the second or third decade of life. Typical laboratory findings in EPB42-HS include anemia (decreased hemoglobin [Hgb] level) and reticulocytosis (increased percentage of reticulocytes), with high mean corpuscular Hgb concentration, presence of spherocytes in the peripheral blood smear, significantly decreased or absent haptoglobin, mildly increased osmotic fragility in osmotic fragility assay, increased Omin (osmolality at which 50% of red blood cells hemolyze), and decreased maximal elongation index (EImax) in osmotic gradient ektacytometry.
Hereditary spherocytosis type 4
MedGen UID:
436375
Concept ID:
C2675212
Disease or Syndrome
People with the mild form may have very mild anemia or sometimes have no symptoms. People with the moderate form typically have anemia, jaundice, and splenomegaly. Many also develop gallstones. The signs and symptoms of moderate hereditary spherocytosis usually appear in childhood. Individuals with the moderate/severe form have all the features of the moderate form but also have severe anemia. Those with the severe form have life-threatening anemia that requires frequent blood transfusions to replenish their red blood cell supply. They also have severe splenomegaly, jaundice, and a high risk for developing gallstones. Some individuals with the severe form have short stature, delayed sexual development, and skeletal abnormalities.\n\nThere are four forms of hereditary spherocytosis, which are distinguished by the severity of signs and symptoms. They are known as the mild form, the moderate form, the moderate/severe form, and the severe form. It is estimated that 20 to 30 percent of people with hereditary spherocytosis have the mild form, 60 to 70 percent have the moderate form, 10 percent have the moderate/severe form, and 3 to 5 percent have the severe form.\n\nHereditary spherocytosis is a condition that affects red blood cells. People with this condition typically experience a shortage of red blood cells (anemia), yellowing of the eyes and skin (jaundice), and an enlarged spleen (splenomegaly). Most newborns with hereditary spherocytosis have severe anemia, although it improves after the first year of life. Splenomegaly can occur anytime from early childhood to adulthood. About half of affected individuals develop hard deposits in the gallbladder called gallstones, which typically occur from late childhood to mid-adulthood.
Elliptocytosis 1
MedGen UID:
394841
Concept ID:
C2678497
Disease or Syndrome
Elliptocytosis is a hematologic disorder characterized by elliptically shaped erythrocytes and a variable degree of hemolytic anemia. Usually inherited as an autosomal dominant trait, elliptocytosis results from mutation in any one of several genes encoding proteins of the red cell membrane skeleton (summary by McGuire et al., 1988). Genetic Heterogeneity of Elliptocytosis Elliptocytosis-2 (130600) is caused by mutation in the SPTA1 gene (182860). Elliptocytosis-3 (617948) is caused by mutation in the SPTB gene (182870). Elliptocytosis-4 (166900), also known as Southeast Asian ovalocytosis, is caused by mutation in the SLC4A1 gene (109270). Also see pyropoikilocytosis (266140). See Delaunay (2007) for a discussion of the molecular basis of hereditary red cell membrane disorders.
Anemia, nonspherocytic hemolytic, due to G6PD deficiency
MedGen UID:
403555
Concept ID:
C2720289
Disease or Syndrome
G6PD deficiency is the most common genetic cause of chronic and drug-, food-, or infection-induced hemolytic anemia. G6PD catalyzes the first reaction in the pentose phosphate pathway, which is the only NADPH-generation process in mature red cells; therefore, defense against oxidative damage is dependent on G6PD. Most G6PD-deficient patients are asymptomatic throughout their life, but G6PD deficiency can be life-threatening. The most common clinical manifestations of G6PD deficiency are neonatal jaundice and acute hemolytic anemia, which in most patients is triggered by an exogenous agent, e.g., primaquine or fava beans. Acute hemolysis is characterized by fatigue, back pain, anemia, and jaundice. Increased unconjugated bilirubin, lactate dehydrogenase, and reticulocytosis are markers of the disorder. The striking similarity between the areas where G6PD deficiency is common and Plasmodium falciparum malaria (see 611162) is endemic provided evidence that G6PD deficiency confers resistance against malaria (summary by Cappellini and Fiorelli, 2008).
Polycystic kidney disease 2
MedGen UID:
442699
Concept ID:
C2751306
Disease or Syndrome
Autosomal dominant polycystic kidney disease (ADPKD) is generally a late-onset multisystem disorder characterized by bilateral kidney cysts, liver cysts, and an increased risk of intracranial aneurysms. Other manifestations include: cysts in the pancreas, seminal vesicles, and arachnoid membrane; dilatation of the aortic root and dissection of the thoracic aorta; mitral valve prolapse; and abdominal wall hernias. Kidney manifestations include early-onset hypertension, kidney pain, and kidney insufficiency. Approximately 50% of individuals with ADPKD have end-stage kidney disease (ESKD) by age 60 years. The prevalence of liver cysts increases with age and occasionally results in clinically significant severe polycystic liver disease (PLD), most often in females. Overall, the prevalence of intracranial aneurysms is fivefold higher than in the general population and further increased in those with a positive family history of aneurysms or subarachnoid hemorrhage. There is substantial variability in the severity of kidney disease and other extra-kidney manifestations.
Pituitary hormone deficiency, combined, 1
MedGen UID:
414421
Concept ID:
C2751608
Disease or Syndrome
Combined pituitary hormone deficiency (CPHD) in man denotes impaired production of growth hormone (GH; 139250) and one or more of the other 5 anterior pituitary hormones. Mutations of the POU1F1 gene in the human and Pit1 in the mouse are responsible for pleiotropic deficiencies of GH, prolactin (PRL; 176760), and thyroid-stimulating hormone (TSH; see 188540), while the production of adrenocorticotrophic hormone (ACTH; see 176830), luteinizing hormone (LH; 152780), and follicle-stimulating hormone (FSH; 136530) are preserved (Wu et al., 1998). Some patients exhibit only GH deficiency, although approximately 50% of isolated GH deficiency progresses to CPHD (Gergics et al., 2021). In infancy severe growth deficiency from birth as well as distinctive facial features with prominent forehead, marked midfacial hypoplasia with depressed nasal bridge, deep-set eyes, and a short nose with anteverted nostrils and hypoplastic pituitary gland by MRI examination can be seen (Aarskog et al., 1997). Some cases present with severe mental retardation along with short stature (Radovick et al., 1992). Reviews Voss and Rosenfeld (1992) reviewed the development and differentiation of the 5 pituitary cell types: galactotropes, gonadotropes, corticotropes, thyrotropes, and somatotropes. As indicated by the mutations in PIT1 described later, combined pituitary hormone deficiency can have either autosomal dominant or autosomal recessive inheritance, depending on the part of the PIT1 molecule affected by the mutation. Some mutations have a dominant-negative effect. Genetic Heterogeneity of Combined Pituitary Hormone Deficiency CPHD2 (262600), associated with hypogonadism, is caused by mutation in the PROP1 gene (601538). CPHD3 (221750), which is associated with rigid cervical spine and variable sensorineural deafness, is caused by mutation in the LHX3 gene (600577). CPHD4 (262700) is caused by mutation in the LHX4 gene (602146). CPHD5 (see septooptic dysplasia, 182230) is caused by mutation in the HESX1 gene (601802). CPHD6 (613986) is caused by mutation in the OTX2 gene (600037). CPHD7 (618160) is caused by mutation in the RNPC3 gene (618016).
DPAGT1-congenital disorder of glycosylation
MedGen UID:
419694
Concept ID:
C2931004
Disease or Syndrome
Like all CDGs, which are caused by a shortage of precursor monosaccharide phosphate or deficiencies in the glycosyltransferases required for lipid-linked oligosaccharide precursor (LLO) synthesis, CDG Ij is caused by a defect in the formation of DPAGT1, the first dolichyl-linked intermediate of the protein N-glycosylation pathway. For a general discussion of CDGs, see CDG1A (212065).
COG7 congenital disorder of glycosylation
MedGen UID:
419311
Concept ID:
C2931010
Disease or Syndrome
CDG IIe is caused by a mutation that impairs the integrity of the conserved oligomeric Golgi (COG) complex and alters Golgi trafficking, resulting in the disruption of multiple glycosylation pathways. For a general discussion of CDGs, see CDG1A (212065).
Crigler-Najjar syndrome, type II
MedGen UID:
419718
Concept ID:
C2931132
Disease or Syndrome
The hereditary hyperbilirubinemias (Wolkoff et al., 1983) include (1) those resulting in predominantly unconjugated hyperbilirubinemia: Gilbert or Arias syndrome, Crigler-Najjar syndrome type I, and Crigler-Najjar syndrome type II; and (2) those resulting in predominantly conjugated hyperbilirubinemia: Dubin-Johnson syndrome (237500), Rotor syndrome (237450), and several forms of intrahepatic cholestasis (147480, 211600, 214950, 243300). Detailed studies show that patients with Crigler-Najjar syndrome type II have reduced activity of bilirubin glucuronosyltransferase (Labrune et al., 1989, Seppen et al., 1994).
Hemolytic anemia due to hexokinase deficiency
MedGen UID:
461693
Concept ID:
C3150343
Disease or Syndrome
Hexokinase deficiency is an autosomal recessive disorder characterized by early-onset severe hemolytic anemia (summary by van Wijk et al., 2003).
Arthrogryposis, renal dysfunction, and cholestasis 2
MedGen UID:
462022
Concept ID:
C3150672
Disease or Syndrome
Arthrogryposis, renal dysfunction, and cholestasis-2 (ARCS2) is a multisystem disorder associated with abnormalities in polarized liver and kidney cells (Qiu et al., 2019). For a general phenotypic description and a discussion of genetic heterogeneity of ARCS, see ARCS1 (208085).
Hemolytic anemia due to glucophosphate isomerase deficiency
MedGen UID:
462080
Concept ID:
C3150730
Disease or Syndrome
Glucose phosphate isomerase (GPI) deficiency is an inherited disorder that affects red blood cells, which carry oxygen to the body's tissues. People with this disorder have a condition known as chronic hemolytic anemia, in which red blood cells are broken down (undergo hemolysis) prematurely, resulting in a shortage of red blood cells (anemia). Chronic hemolytic anemia can lead to unusually pale skin (pallor), yellowing of the eyes and skin (jaundice), extreme tiredness (fatigue), shortness of breath (dyspnea), and a rapid heart rate (tachycardia). An enlarged spleen (splenomegaly), an excess of iron in the blood, and small pebble-like deposits in the gallbladder or bile ducts (gallstones) may also occur in this disorder.\n\nHemolytic anemia in GPI deficiency can range from mild to severe. In the most severe cases, affected individuals do not survive to birth. Individuals with milder disease can survive into adulthood. People with any level of severity of the disorder can have episodes of more severe hemolysis, called hemolytic crises, which can be triggered by bacterial or viral infections.\n\nA small percentage of individuals with GPI deficiency also have neurological problems, including intellectual disability and difficulty with coordinating movements (ataxia).
Congenital bile acid synthesis defect 3
MedGen UID:
462497
Concept ID:
C3151147
Disease or Syndrome
Congenital bile acid synthesis defect-3 (CBAS3) is an autosomal recessive disorder characterized by prolonged jaundice after birth, hepatomegaly, conjugated hyperbilirubinemia, elevations in characteristic abnormal bile acids, and progressive intrahepatic cholestasis with liver fibrosis (summary by Setchell et al., 1998 and Ueki et al., 2008). For a general phenotypic description and a discussion of genetic heterogeneity of congenital bile acid synthesis defects, see 607765.
Constitutional megaloblastic anemia with severe neurologic disease
MedGen UID:
462555
Concept ID:
C3151205
Disease or Syndrome
Dihydrofolate reductase deficiency is an autosomal recessive metabolic disorder characterized by the hematologic findings of megaloblastic anemia and variable neurologic symptoms, ranging from severe developmental delay and generalized seizures in infancy (Banka et al., 2011) to childhood absence epilepsy with learning difficulties to lack of symptoms (Cario et al., 2011). Treatment with folinic acid can ameliorate some of the symptoms.
Cyanosis, transient neonatal
MedGen UID:
462771
Concept ID:
C3151421
Disease or Syndrome
Neonatal cyanosis is characterized by symptoms in the fetus and neonate that gradually abate by 5 to 6 months of age. The disorder is caused by a defect in the fetal hemoglobin chain, which causes reduced affinity for oxygen due to steric inhibition of oxygen binding and/or due to increased oxidation of the fetal hemoglobin molecule to methemoglobin (Hb FM), which has decreased oxygen-binding capacity. Some patients develop anemia resulting from increased destruction of red cells containing abnormal or unstable hemoglobin. The cyanosis resolves spontaneously by 5 to 6 months of age or earlier, as the adult beta-globin chain (HBB; 141900) is produced and replaces the fetal gamma-globin chain (summary by Crowley et al., 2011).
Ogden syndrome
MedGen UID:
477078
Concept ID:
C3275447
Disease or Syndrome
Ogden syndrome (OGDNS) is an X-linked neurodevelopmental disorder characterized by postnatal growth failure, severely delayed psychomotor development, variable dysmorphic features, and hypotonia. Many patients also have cardiac malformations or arrhythmias (summary by Popp et al., 2015).
Acute infantile liver failure due to synthesis defect of mtDNA-encoded proteins
MedGen UID:
480294
Concept ID:
C3278664
Disease or Syndrome
Acute infantile liver failure resulting from TRMU mutation is a transient disorder of hepatic function. In addition to elevated liver enzymes, jaundice, vomiting, coagulopathy, and hyperbilirubinemia, the presence of increased serum lactate is consistent with a defect in mitochondrial respiratory function. With supportive care, patients who survive the initial acute episode can recover and show normal development (Zeharia et al., 2009). See also transient infantile mitochondrial myopathy (MMIT; 500009), which is a similar disorder. A more severe, permanent disorder with some overlapping features is associated with mitochondrial DNA depletion (251880). See ILFS1 (615438) for information on syndromic infantile liver failure.
Microcephaly, epilepsy, and diabetes syndrome
MedGen UID:
481870
Concept ID:
C3280240
Disease or Syndrome
Microcephaly, epilepsy, and diabetes syndrome-1 (MEDS1) is an autosomal recessive neurodevelopmental disorder characterized by microcephaly, simplified gyral pattern, severe epilepsy, and infantile diabetes (summary by Poulton et al., 2011). Genetic Heterogeneity of Microcephaly, Epilepsy, and Diabetes Syndrome MEDS2 (619278) is caused by mutation in the YIPF5 gene (611483) on chromosome 5q31.
Cholestasis, intrahepatic, of pregnancy, 1
MedGen UID:
762759
Concept ID:
C3549845
Disease or Syndrome
Intrahepatic cholestasis of pregnancy is a reversible form of cholestasis that occurs most often in the third trimester of pregnancy and recurs in 45 to 70% of subsequent pregnancies. Symptoms include pruritus, jaundice, increased serum bile salts, and abnormal liver enzymes, all of which resolve rapidly after delivery. However, the condition is associated with fetal complications, including placental insufficiency, premature labor, fetal distress, and intrauterine death. Some women with ICP may also be susceptible to oral contraceptive-induced cholestasis (OCIC) (summary by Pasmant et al., 2012). Genetic Heterogeneity of Intrahepatic Cholestasis of Pregnancy See also ICP3 (614972), caused by mutation in the ABCB4 gene (171060).
Peroxisome biogenesis disorder 2A (Zellweger)
MedGen UID:
763187
Concept ID:
C3550273
Disease or Syndrome
The peroxisome biogenesis disorder (PBD) Zellweger syndrome (ZS) is an autosomal recessive multiple congenital anomaly syndrome. Affected children present in the newborn period with profound hypotonia, seizures, and inability to feed. Characteristic craniofacial anomalies, eye abnormalities, neuronal migration defects, hepatomegaly, and chondrodysplasia punctata are present. Children with this condition do not show any significant development and usually die in the first year of life (summary by Steinberg et al., 2006). For a complete phenotypic description and a discussion of genetic heterogeneity of Zellweger syndrome, see 214100. Individuals with PBDs of complementation group 2 (CG2) have mutations in the PEX5 gene. For information on the history of PBD complementation groups, see 214100.
Hyperbilirubinemia, shunt, primary
MedGen UID:
763312
Concept ID:
C3550398
Disease or Syndrome
Primary shunt hyperbilirubinemia (PSHB) is a rare form of clinical jaundice characterized by increased serum levels of unconjugated bilirubin associated with ineffective erythropoiesis and a hyperplastic bone marrow. Peripheral red blood cell survival is normal (summary by Wang et al., 2006). Although primary shunt hyperbilirubinemia is clinically similar to Gilbert syndrome (143500), affected individuals do not have impaired activity of UDP-glucuronosyltransferase (UGT1A1; 191740). The term 'shunt' refers to a 'shortcut' in bilirubin production, from the bone marrow or from very young red blood cells as opposed to being derived from the hemoglobin of mature circulating erythrocytes (Israels et al., 1959).
Peroxisome biogenesis disorder 5A (Zellweger)
MedGen UID:
766854
Concept ID:
C3553940
Disease or Syndrome
The peroxisomal biogenesis disorder (PBD) Zellweger syndrome (ZS) is an autosomal recessive multiple congenital anomaly syndrome. Affected children present in the newborn period with profound hypotonia, seizures, and inability to feed. Characteristic craniofacial anomalies, eye abnormalities, neuronal migration defects, hepatomegaly, and chondrodysplasia punctata are present. Children with this condition do not show any significant development and usually die in the first year of life (summary by Steinberg et al., 2006). For a complete phenotypic description and a discussion of genetic heterogeneity of Zellweger syndrome, see 214100. Individuals with PBDs of complementation group 5 (CG5, equivalent to CG10 and CGF) have mutations in the PEX2 gene. For information on the history of PBD complementation groups, see 214100.
Peroxisome biogenesis disorder 8A (Zellweger)
MedGen UID:
766873
Concept ID:
C3553959
Disease or Syndrome
Zellweger syndrome (ZS) is an autosomal recessive multiple congenital anomaly syndrome resulting from disordered peroxisome biogenesis. Affected children present in the newborn period with profound hypotonia, seizures, and inability to feed. Characteristic craniofacial anomalies, eye abnormalities, neuronal migration defects, hepatomegaly, and chondrodysplasia punctata are present. Children with this condition do not show any significant development and usually die in the first year of life (summary by Steinberg et al., 2006). For a complete phenotypic description and a discussion of genetic heterogeneity of Zellweger syndrome, see 214100. Individuals with PBDs of complementation group 9 (CG9, equivalent to CGD) have mutations in the PEX16 gene. For information on the history of PBD complementation groups, see 214100.
Peroxisome biogenesis disorder 13A (Zellweger)
MedGen UID:
766918
Concept ID:
C3554004
Disease or Syndrome
Zellweger syndrome (ZS) is an autosomal recessive multiple congenital anomaly syndrome resulting from disordered peroxisome biogenesis. Affected children present in the newborn period with profound hypotonia, seizures, and inability to feed. Characteristic craniofacial anomalies, eye abnormalities, neuronal migration defects, hepatomegaly, and chondrodysplasia punctata are present. Children with this condition do not show any significant development and usually die in the first year of life (summary by Steinberg et al., 2006). For a complete phenotypic description and a discussion of genetic heterogeneity of Zellweger syndrome, see 214100. Individuals with PBDs of complementation group K (CGK) have mutations in the PEX14 gene. For information on the history of PBD complementation groups, see 214100.
Cholestasis, intrahepatic, of pregnancy, 3
MedGen UID:
767155
Concept ID:
C3554241
Disease or Syndrome
Intrahepatic cholestasis of pregnancy is a reversible form of cholestasis that occurs most often in the third trimester of pregnancy and recurs in 45 to 70% of subsequent pregnancies. Symptoms include pruritus, jaundice, increased serum bile salts, and abnormal liver enzymes, all of which resolve rapidly after delivery. However, the condition is associated with fetal complications, including placental insufficiency, premature labor, fetal distress, and intrauterine death. Women with ICP are also susceptible to oral contraceptive-induced cholestasis (OCIC). Ursodeoxycholic acid (UDCA) is an effective treatment for conditions caused by ABCB4 mutations (summary by Pasmant et al., 2012). Mutation in the ABCB4 gene accounts for about 15% of ICP cases (summary by Ziol et al., 2008). For a discussion of genetic heterogeneity of ICP, see ICP1 (147480).
Infantile liver failure syndrome 2
MedGen UID:
815981
Concept ID:
C3809651
Disease or Syndrome
Infantile liver failure syndrome-2 is an autosomal recessive disorder characterized by recurrent episodes of acute liver failure during intercurrent febrile illness. Patients first present in infancy or early childhood, and there is complete recovery between episodes with conservative treatment (summary by Haack et al., 2015). For a discussion of genetic heterogeneity of infantile liver failure syndrome, see ILFS1 (615438).
Congenital dyserythropoietic anemia type type 1B
MedGen UID:
816515
Concept ID:
C3810185
Disease or Syndrome
Congenital dyserythropoietic anemia type I (CDA I) is characterized by moderate-to-severe macrocytic anemia presenting occasionally in utero as severe anemia associated with hydrops fetalis but more commonly in neonates as hepatomegaly, early jaundice, and intrauterine growth restriction. Some individuals present in childhood or adulthood. After the neonatal period, most affected individuals have lifelong moderate anemia, usually accompanied by jaundice and splenomegaly. Secondary hemochromatosis develops with age as a result of increased iron absorption even in those who are not transfused. Distal limb anomalies occur in 4%-14% of affected individuals.
Peroxisome biogenesis disorder 7A (Zellweger)
MedGen UID:
854881
Concept ID:
C3888385
Disease or Syndrome
Zellweger syndrome (ZS) is an autosomal recessive multiple congenital anomaly syndrome resulting from disordered peroxisome biogenesis. Affected children present in the newborn period with profound hypotonia, seizures, and inability to feed. Characteristic craniofacial anomalies, eye abnormalities, neuronal migration defects, hepatomegaly, and chondrodysplasia punctata are present. Children with this condition do not show any significant development and usually die in the first year of life (summary by Steinberg et al., 2006). For a complete phenotypic description and a discussion of genetic heterogeneity of Zellweger syndrome, see 214100. Individuals with PBDs of complementation group 8 (CG8, equivalent to CGA) have mutations in the PEX26 gene. For information on the history of PBD complementation groups, see 214100.
DIEGO BLOOD GROUP ANTIGEN
MedGen UID:
856157
Concept ID:
C3892933
Finding
Sideroblastic anemia 3
MedGen UID:
895975
Concept ID:
C4225155
Disease or Syndrome
Sideroblastic anemia-3 is an autosomal recessive hematologic disorder characterized by onset of anemia in adulthood. Affected individuals show signs of systemic iron overload, and iron chelation therapy may be of clinical benefit (summary by Liu et al., 2014). For a discussion of genetic heterogeneity of sideroblastic anemia, see SIDBA1 (300751).
Dehydrated hereditary stomatocytosis 2
MedGen UID:
908701
Concept ID:
C4225242
Disease or Syndrome
In dehydrated hereditary stomatocytosis (DHS), also known as hereditary xerocytosis, red blood cells exhibit altered intracellular cation content and cellular dehydration, resulting in increased erythrocyte mean corpuscular hemoglobin concentration (MCHC) and decreased erythrocyte osmotic fragility. Blood films show various cell shape abnormalities, the most characteristic being the stomatocyte, with a straight or crescent-shaped central pallor (summary by Rapetti-Mauss et al., 2015). For discussion of clinical and genetic heterogeneity of the stomatocytoses, see DHS1 (194380).
Congenital bile acid synthesis defect 5
MedGen UID:
904751
Concept ID:
C4225390
Congenital Abnormality
Any congenital bile acid synthesis defect in which the cause of the disease is a mutation in the ABCD3 gene.
3-methylglutaconic aciduria type 8
MedGen UID:
934617
Concept ID:
C4310650
Disease or Syndrome
MGCA8 is an autosomal recessive metabolic disorder resulting in death in infancy. Features include hypotonia, abnormal movements, respiratory insufficiency with apneic episodes, and lack of developmental progress, often with seizures. Brain imaging is variable, but may show progressive cerebral atrophy. Laboratory studies show increased serum lactate and 3-methylglutaconic aciduria, suggesting a mitochondrial defect (summary by Mandel et al., 2016). For a phenotypic description and a discussion of genetic heterogeneity of 3-methylglutaconic aciduria, see MGCA type I (250950).
Mitochondrial DNA depletion syndrome 15 (hepatocerebral type);
MedGen UID:
934657
Concept ID:
C4310690
Disease or Syndrome
Any mitochondrial DNA depletion syndrome in which the cause of the disease is a mutation in the TFAM gene.
Cholestasis, progressive familial intrahepatic, 5
MedGen UID:
934714
Concept ID:
C4310747
Disease or Syndrome
Progressive familial intrahepatic cholestasis-5 (PFIC5) is an autosomal recessive severe liver disorder characterized by onset of intralobular cholestasis in the neonatal period. The disease is rapidly progressive, leading to liver failure and death if liver transplant is not performed. Other features include abnormal liver enzymes, low to normal gamma-glutamyl transferase (GGT) activity, increased alpha-fetoprotein, and a vitamin K-independent coagulopathy (summary by Gomez-Ospina et al., 2016). For a general phenotypic description and a discussion of genetic heterogeneity of PFIC, see PFIC1 (211600).
Isolated neonatal sclerosing cholangitis
MedGen UID:
1393230
Concept ID:
C4479344
Disease or Syndrome
Neonatal sclerosing cholangitis (NSC) is a rare autosomal recessive form of severe liver disease with onset in infancy. Affected infants have jaundice, cholestasis, acholic stools, and progressive liver dysfunction resulting in fibrosis and cirrhosis; most require liver transplantation in the first few decades of life. Cholangiography shows patent biliary ducts, but there are bile duct irregularities (summary by Girard et al., 2016; Grammatikopoulos et al., 2016).
Extrahepatic biliary duct atresia
MedGen UID:
1621383
Concept ID:
C4520983
Congenital Abnormality
Biliary atresia is a disorder of infants in which there is progressive obliteration or discontinuity of the extrahepatic biliary system, resulting in obstruction of bile flow. Untreated, the resulting cholestasis leads to progressive conjugated hyperbilirubinemia, cirrhosis, and hepatic failure (Bates et al., 1998). Most patients require liver transplantation within the first year of life (Leyva-Vega et al., 2010). See also Alagille syndrome (118450), which includes biliary atresia as a feature.
Dehydrated hereditary stomatocytosis with or without pseudohyperkalemia and/or perinatal edema
MedGen UID:
1638271
Concept ID:
C4551512
Disease or Syndrome
Dehydrated hereditary stomatocytosis (DHS), also known as hereditary xerocytosis, is an autosomal dominant hemolytic anemia characterized by primary erythrocyte dehydration. DHS erythrocytes exhibit decreased total cation and potassium content that are not accompanied by a proportional net gain of sodium and water. DHS patients typically exhibit mild to moderate compensated hemolytic anemia, with an increased erythrocyte mean corpuscular hemoglobin concentration and a decreased osmotic fragility, both of which reflect cellular dehydration (summary by Zarychanski et al., 2012). Patients may also show perinatal edema and pseudohyperkalemia due to loss of K+ from red cells stored at room temperature. A minor proportion of red cells appear as stomatocytes on blood films. Complications such as splenomegaly and cholelithiasis, resulting from increased red cell trapping in the spleen and elevated bilirubin levels, respectively, may occur. The course of DHS is frequently associated with iron overload, which may lead to hepatosiderosis (summary by Albuisson et al., 2013). Dehydrated red blood cells, including those from hereditary xerocytosis patients, show delayed infection rates to Plasmodium in vitro, suggesting a potential protective mechanism against malaria (Tiffert et al., 2005). A polymorphism in PIEZO1 that is enriched in populations of African descent and results in xerocytosis conferred resistance to Plasmodium infection in vitro (see 611184.0016). The 'leaky red blood cells' in familial pseudohyperkalemia show a temperature-dependent loss of potassium when stored at room temperature, manifesting as apparent hyperkalemia. The red blood cells show a reduced life span in vivo, but there is no frank hemolysis. Studies of cation content and transport show a marginal increase in permeability at 37 degrees C and a degree of cellular dehydration, qualitatively similar to the changes seen in dehydrated hereditary stomatocytosis. Physiologic studies show that the passive leak of potassium has an abnormal temperature dependence, such that the leak is less sensitive to temperature than that in normal cells (summary by Iolascon et al., 1999). Carella et al. (2004) noted that 3 clinical forms of pseudohyperkalemia unassociated with hematologic manifestations, based predominantly on the leak-temperature dependence curve, had been reported: (1) pseudohyperkalemia Edinburgh, in which the curve has a shallow slope; (2) pseudohyperkalemia Chiswick or Falkirk (see 609153), in which the curve is shouldered; and (3) pseudohyperkalemia Cardiff (see 609153), in which the temperature dependence of the leak shows a 'U-shaped' profile with a minimum at 23 degrees C. Gore et al. (2004) stated that potassium-flux temperature profiles are consistent both from year to year in an individual as well as consistent within affected members of a pedigree. Genetic Heterogeneity of Hereditary Stomatocytosis Dehydrated hereditary stomatocytosis-2 (DHS2; 616689) is caused by mutation in the KCNN4 gene (602754) on chromosome 19q13. Another form of stomatocytosis, involving familial pseudohyperkalemia with minimal hematologic abnormalities (PSHK2; 609153), is caused by mutation in the ABCB6 gene (605452) on chromosome 2q35. Cryohydrocytosis (CHC; 185020) is caused by mutation in the SLC4A1 gene (109270) on chromosome 17q21, and stomatin-deficient cryohydrocytosis with neurologic defects (SDCHCN; 608885) is caused by mutation in the SLC2A1 gene (138140) on chromosome 1p34. An overhydrated form of hereditary stomatocytosis (OHST; 185000) is caused by mutation in the RHAG gene (180297) on chromosome 6p12. See 137280 for a discussion of the association of familial stomatocytosis and hypertrophic gastritis in the dog, an autosomal recessive syndrome. Reviews Delaunay (2004) reviewed genetic disorders of red cell membrane permeability to monovalent cations, noting 'inevitable' overlap between entities based on clinical phenotype. Bruce (2009) provided a review of hereditary stomatocytosis and cation-leaky red cells, stating that consistent features include hemolytic anemia, a monovalent cation leak, and changes in red cell morphology that appear to follow a continuum, from normal discocyte to stomatocyte to echinocyte in DHS, and from discocyte to stomatocyte to spherocyte to fragmentation in OHST. Bruce (2009) suggested that the underlying pathologic mechanism might involve misfolded mutant proteins that escape the quality control system of the cell and reach the red cell membrane, where they disrupt the red cell membrane structure and cause a cation leak that alters the hydration of the red cell, thereby changing the morphology and viability of the cell. King and Zanella (2013) provided an overview of 2 groups of nonimmune hereditary red cell membrane disorders caused by defects in membrane proteins located in distinct layers of the red cell membrane: red cell cytoskeleton disorders, including hereditary spherocytosis (see 182900), hereditary elliptocytosis (see 611804), and hereditary pyropoikilocytosis (266140); and cation permeability disorders of the red cell membrane, or hereditary stomatocytoses, including DHS, OHST, CHC, and PSHK. The authors noted that because there is no specific screening test for the hereditary stomatocytoses, a preliminary diagnosis is based on the presence of a compensated hemolytic anemia, macrocytosis, and a temperature- or time-dependent pseudohyperkalemia in some patients. King et al. (2015) reported the International Council for Standardization in Haematology (ICSH) guidelines for laboratory diagnosis of nonimmune hereditary red cell membrane disorders.
Familial hemophagocytic lymphohistiocytosis type 1
MedGen UID:
1642840
Concept ID:
C4551514
Disease or Syndrome
Familial Hemophagocytic lymphohistiocytosis (FHL) is a rare primary immunodeficiency characterized by a macrophage activation syndrome with an onset usually occurring within a few months or less common several years after birth.
Asphyxiating thoracic dystrophy 1
MedGen UID:
1648057
Concept ID:
C4551856
Congenital Abnormality
Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). Genetic Heterogeneity of Asphyxiating Thoracic Dysplasia SRTD1 has been mapped to chromosome 15q13. See also SRTD2 (611263), caused by mutation in the IFT80 gene (611177); SRTD3 (613091), caused by mutation in the DYNC2H1 gene (603297); SRTD4 (613819), caused by mutation in the TTC21B gene (612014); SRTD5 (614376), caused by mutation in the WDR19 gene (608151); SRTD6 (263520), caused by mutation in the NEK1 gene (604588); SRTD7 (614091), caused by mutation in the WDR35 gene (613602); SRTD8 (615503), caused by mutation in the WDR60 gene (615462); SRTD9 (266920), caused by mutation in the IFT140 gene (614620); SRTD10 (615630), caused by mutation in the IFT172 gene (607386); SRTD11 (615633), caused by mutation in the WDR34 gene (613363); SRTD13 (616300), caused by mutation in the CEP120 gene (613446); SRTD14 (616546), caused by mutation in the KIAA0586 gene (610178); SRTD15 (617088), caused by mutation in the DYNC2LI1 gene (617083); SRTD16 (617102), caused by mutation in the IFT52 gene (617094); SRTD17 (617405), caused by mutation in the TCTEX1D2 gene (617353); SRTD18 (617866), caused by mutation in the IFT43 gene (614068); SRTD19 (617895), caused by mutation in the IFT81 gene (605489); SRTD20 (617925), caused by mutation in the INTU gene (610621); and SRTD21 (619479), caused by mutation in the KIAA0753 gene (617112). See also SRTD12 (Beemer-Langer syndrome; 269860).
Progressive familial intrahepatic cholestasis type 1
MedGen UID:
1645830
Concept ID:
C4551898
Disease or Syndrome
The phenotypic spectrum of ATP8B1 deficiency ranges from severe through moderate to mild. Severe ATP8B1 deficiency is characterized by infantile-onset cholestasis that progresses to cirrhosis, hepatic failure, and early death. Although mild-to-moderate ATP8B1 deficiency initially was thought to involve intermittent symptomatic cholestasis with a lack of hepatic fibrosis, it is now known that hepatic fibrosis may be present early in the disease course. Furthermore, in some persons with ATP8B1 deficiency the clinical findings can span the phenotypic spectrum, shifting over time from the mild end of the spectrum (episodic cholestasis) to the severe end of the spectrum (persistent cholestasis). Sensorineural hearing loss (SNHL) is common across the phenotypic spectrum.
Trichohepatoenteric syndrome 1
MedGen UID:
1644087
Concept ID:
C4551982
Disease or Syndrome
Trichohepatoenteric syndrome (THES), generally considered to be a neonatal enteropathy, is characterized by intractable diarrhea (seen in almost all affected children), woolly hair (seen in all), intrauterine growth restriction, facial dysmorphism, and short stature. Additional findings include poorly characterized immunodeficiency, recurrent infections, skin abnormalities, and liver disease. Mild intellectual disability (ID) is seen in about 50% of affected individuals. Less common findings include congenital heart defects and platelet anomalies. To date 52 affected individuals have been reported.
Pseudo-TORCH syndrome 1
MedGen UID:
1639355
Concept ID:
C4552078
Disease or Syndrome
X-linked congenital hemolytic anemia
MedGen UID:
1648376
Concept ID:
C4746970
Disease or Syndrome
Mitochondrial DNA depletion syndrome 3
MedGen UID:
1682503
Concept ID:
C5191055
Disease or Syndrome
The two forms of deoxyguanosine kinase (DGUOK) deficiency are a neonatal multisystem disorder and an isolated hepatic disorder that presents later in infancy or childhood. The majority of affected individuals have the multisystem illness with hepatic disease (jaundice, cholestasis, hepatomegaly, and elevated transaminases) and neurologic manifestations (hypotonia, nystagmus, and psychomotor retardation) evident within weeks of birth. Those with isolated liver disease may also have renal involvement and some later develop mild hypotonia. Progressive hepatic disease is the most common cause of death in both forms.
Mitochondrial DNA depletion syndrome 16 (hepatic type)
MedGen UID:
1684495
Concept ID:
C5193142
Disease or Syndrome
Hepatitis, fulminant viral, susceptibility to
MedGen UID:
1684882
Concept ID:
C5231406
Finding
Infantile liver failure syndrome 3
MedGen UID:
1684678
Concept ID:
C5231437
Disease or Syndrome
Infantile liver failure syndrome-3 is an autosomal recessive disorder characterized by recurrent episodes of acute liver failure during intercurrent febrile illness. Patients first present in infancy or early childhood, and there usually is complete recovery between episodes with conservative treatment. Affected individuals also have skeletal anomalies of the vertebral bodies and femoral heads (summary by Cousin et al., 2019). For a discussion of genetic heterogeneity of infantile liver failure syndrome, see ILFS1 (615438).
Congenital disorder of glycosylation, type IIr
MedGen UID:
1717186
Concept ID:
C5393313
Disease or Syndrome
Congenital disorder of glycosylation type 2R (CDG2R) is an X-linked recessive disorder characterized by infantile onset of liver failure, recurrent infections due to hypogammaglobulinemia, and cutis laxa. Some patients may also have mild intellectual impairment and dysmorphic features. Laboratory studies showed defective glycosylation of serum transferrin in a type 2 pattern (summary by Rujano et al., 2017). For an overview of congenital disorders of glycosylation, see CDG1A (212065) and CDG2A (212066).
Bile acid conjugation defect 1
MedGen UID:
1780260
Concept ID:
C5543203
Disease or Syndrome
Bile acid conjugation defect-1 (BACD1) is an autosomal recessive metabolic disorder characterized by onset of symptoms, including jaundice and failure to thrive, in early infancy. The clinical features of the disorder result from impaired absorption of fat-soluble vitamins. Vitamin D deficiency causes rickets with variable growth deficiency, and vitamin K deficiency causes a coagulopathy with decreased production of vitamin K-dependent clotting factors. More variable features may include pruritis, anemia, hepatomegaly, and bile duct proliferation on liver biopsy. Laboratory studies show abnormally increased levels of unconjugated bile acids (summary by Setchell et al., 2013). See also familial hypercholanemia (FHCA; 607748), in which patients have increased serum bile levels of conjugated bile acids.
DEVELOPMENTAL DELAY, IMPAIRED SPEECH, AND BEHAVIORAL ABNORMALITIES
MedGen UID:
1794167
Concept ID:
C5561957
Disease or Syndrome
Developmental delay, impaired speech, and behavioral abnormalities (DDISBA) is characterized by global developmental delay apparent from early childhood. Intellectual disability can range from mild to severe. Additional variable features may include dysmorphic facial features, seizures, hypotonia, motor abnormalities such as Tourette syndrome or dystonia, and hearing loss (summary by Cousin et al., 2021).
Biliary, renal, neurologic, and skeletal syndrome
MedGen UID:
1794200
Concept ID:
C5561990
Disease or Syndrome
Biliary, renal, neurologic, and skeletal syndrome (BRENS) is an autosomal recessive complex ciliopathy with multisystemic manifestations. The most common presentation is severe neonatal cholestasis that progresses to liver fibrosis and cirrhosis. Most patients have additional clinical features suggestive of a ciliopathy, including postaxial polydactyly, hydrocephalus, retinal abnormalities, and situs inversus. Additional features of the syndrome may include congenital cardiac defects, echogenic kidneys with renal failure, ocular abnormalities, joint hyperextensibility, and dysmorphic facial features. Some patients have global developmental delay. Brain imaging typically shows dilated ventricles, hypomyelination, and white matter abnormalities, although some patients have been described with abnormal pituitary development (summary by Shaheen et al., 2020 and David et al., 2020).
Cholestasis, progressive familial intrahepatic, 7, with or without hearing loss
MedGen UID:
1794253
Concept ID:
C5562043
Disease or Syndrome
Progressive intrahepatic cholestasis-7 with or without hearing loss (PFIC7) is an autosomal recessive liver disorder characterized by infantile-onset jaundice and itching associated with cholestasis, elevated alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and normal gamma glutamyltransferase (GGT). Liver biopsy shows hepatocellular and canalicular cholestasis with fibrotic changes. Many patients have resolution of the liver abnormalities with age, although some may have persistent liver enzyme abnormalities or splenomegaly. A subset of patients develops hearing loss in childhood between early infancy and the teenage years. Rifampicin may be effective for pruritis (summary by Maddirevula et al., 2019). For a discussion of genetic heterogeneity of PFIC, see PFIC1 (211600).
Cholestasis, progressive familial intrahepatic, 8
MedGen UID:
1794255
Concept ID:
C5562045
Disease or Syndrome
Progressive familial intrahepatic cholestasis-8 (PFIC8) is an autosomal recessive disorder characterized by cholestasis and high gamma-glutamyltransferase presenting in the infantile period (summary by Unlusoy Aksu et al., 2019). For a general phenotypic description and a discussion of genetic heterogeneity of PFIC, see PFIC1 (211600).
Immunodeficiency 87 and autoimmunity
MedGen UID:
1794280
Concept ID:
C5562070
Disease or Syndrome
Immunodeficiency-87 and autoimmunity (IMD87) is an autosomal recessive immunologic disorder with wide phenotypic variation and severity. Affected individuals usually present in infancy or early childhood with increased susceptibility to infections, often Epstein-Barr virus (EBV), as well as with lymphadenopathy or autoimmune manifestations, predominantly hemolytic anemia. Laboratory studies may show low or normal lymphocyte numbers, often with skewed T-cell subset ratios. The disorder results primarily from defects in T-cell function, which causes both immunodeficiency and overall immune dysregulation (summary by Serwas et al., 2019 and Fournier et al., 2021).
Congenital dyserythropoietic anemia, type III
MedGen UID:
1801596
Concept ID:
C5676874
Disease or Syndrome
Congenital dyserythropoietic anemia type IIIa (CDAN3A) is a rare autosomal dominant hematologic disorder characterized by nonprogressive mild to moderate hemolytic anemia, macrocytosis in the peripheral blood, intravascular hemolysis, and giant multinucleated erythroblasts in the bone marrow. The disorder results from ineffective erythropoiesis. Laboratory studies show evidence of intravascular hemolysis, including increased thymidine kinase, lactate dehydrogenase, and/or undetectable haptoglobin (summary by Lind et al., 1995; Liljeholm et al., 2013). For a discussion of genetic heterogeneity of congenital dyserythropoietic anemia, see 224120.
Cholestasis, progressive familial intrahepatic, 9
MedGen UID:
1809292
Concept ID:
C5676973
Disease or Syndrome
Progressive familial intrahepatic cholestasis-9 (PFIC9) is an autosomal recessive disorder characterized by onset of cholestasis associated with increased serum gamma-glutamyltransferase (GGT) in infancy or early childhood. Affected individuals have hepatosplenomegaly and may have portal hypertension or upper gastrointestinal bleeding. Liver biopsy shows fibrosis, cirrhosis, bile duct proliferation, and abnormal bile duct morphology. The disorder is thought to result from ciliary defects in cholangiocytes, consistent with a ciliopathy that appears to be restricted to the liver. Treatment with ursodeoxycholic acid (UDCA) or liver transplant is effective (Luan et al., 2021). For a discussion of genetic heterogeneity of progressive familial intrahepatic cholestasis, see PFIC1 (211600).
Cholestasis, progressive familial intrahepatic, 10
MedGen UID:
1807702
Concept ID:
C5676981
Disease or Syndrome
Progressive familial intrahepatic cholestasis-10 (PFIC10) is an autosomal recessive liver disorder characterized by the onset of symptoms in the first months or years of life. Features include jaundice, pruritis, and hepatomegaly associated with increased serum bilirubin and bile acids. Liver transaminases may be variably increased, but gamma-glutamyltransferase (GGT; see 612346) is normal. Liver biopsy shows hepatocellular and canalicular cholestasis with giant cell changes. Although rare patients may have episodes of diarrhea and even show endoscopic features of microvillus inclusion disease (MVID), this tends to be transient and cholestasis dominates the clinical picture (Gonzales et al., 2017; Cockar et al., 2020). For a discussion of genetic heterogeneity of progressive familial intrahepatic cholestasis, see PFIC1 (211600).
HEPATORENOCARDIAC DEGENERATIVE FIBROSIS
MedGen UID:
1808950
Concept ID:
C5676996
Disease or Syndrome
Hepatorenocardiac degenerative fibrosis (HRCDF) is a primarily fibrotic disease affecting the liver, kidney, and heart, with considerable variability in disease onset and expression. Affected individuals develop degenerative hepatic fibrosis in childhood or early adulthood, with variable later onset of fibrocystic kidney disease and hypertrophic cardiomyopathy (Devane et al., 2022).

Recent clinical studies

Etiology

Xiang JX, Maithel SK, Weber SM, Poultsides G, Wolfgang C, Jin L, Fields RC, Weiss M, Scoggins C, Idrees K, Shen P, Zhang XF, Pawlik TM
J Gastrointest Surg 2023 Jan;27(1):105-113. Epub 2022 Nov 14 doi: 10.1007/s11605-022-05523-6. PMID: 36376722
van der Geest BAM, de Mol MJS, Barendse ISA, de Graaf JP, Bertens LCM, Poley MJ, Ista E, Kornelisse RF, Reiss IKM, Steegers EAP, Been JV; STARSHIP Study Group.
Sci Rep 2022 Aug 23;12(1):14385. doi: 10.1038/s41598-022-17933-2. PMID: 35999237Free PMC Article
Wang L, Liu S, Li Y
Contrast Media Mol Imaging 2022;2022:3544735. Epub 2022 Jun 23 doi: 10.1155/2022/3544735. PMID: 35833072Free PMC Article
Feng Q, Huang Z, Su L, Fan Y, Guan Y, Zhang G
Phytomedicine 2022 Jun;100:154051. Epub 2022 Mar 16 doi: 10.1016/j.phymed.2022.154051. PMID: 35325827
Ramachandran RM, Srinivasan R
J Trop Pediatr 2022 Jan 7;68(1) doi: 10.1093/tropej/fmac004. PMID: 35084035

Diagnosis

van der Geest BAM, de Mol MJS, Barendse ISA, de Graaf JP, Bertens LCM, Poley MJ, Ista E, Kornelisse RF, Reiss IKM, Steegers EAP, Been JV; STARSHIP Study Group.
Sci Rep 2022 Aug 23;12(1):14385. doi: 10.1038/s41598-022-17933-2. PMID: 35999237Free PMC Article
Noyes EA, DeVore EK, Carroll TL
Am J Otolaryngol 2022 May-Jun;43(3):103456. Epub 2022 Apr 6 doi: 10.1016/j.amjoto.2022.103456. PMID: 35417838
Cromb D, Chowdhury N, Teoh S
Arch Dis Child Educ Pract Ed 2022 Dec;107(6):415-421. Epub 2021 Aug 30 doi: 10.1136/archdischild-2020-321148. PMID: 34462291
Pavlovic Markovic A, Stojkovic Lalosevic M, Mijac DD, Milovanovic T, Dragasevic S, Sokic Milutinovic A, Krstic MN
Dig Dis 2022;40(3):362-369. Epub 2021 May 20 doi: 10.1159/000517301. PMID: 34015787
Dhali A, Dhali GK, Ghosh R, Sarkar A
Int J Mycobacteriol 2021 Jul-Sep;10(3):320-323. doi: 10.4103/ijmy.ijmy_92_21. PMID: 34494573

Therapy

van der Geest BAM, de Mol MJS, Barendse ISA, de Graaf JP, Bertens LCM, Poley MJ, Ista E, Kornelisse RF, Reiss IKM, Steegers EAP, Been JV; STARSHIP Study Group.
Sci Rep 2022 Aug 23;12(1):14385. doi: 10.1038/s41598-022-17933-2. PMID: 35999237Free PMC Article
Yan H, Zhou Q, Zhu H, Yang H, Wang H, Ling J, Wang J, Cao Y, Tao M
Medicine (Baltimore) 2022 Jul 22;101(29):e29675. doi: 10.1097/MD.0000000000029675. PMID: 35866789Free PMC Article
Feng Q, Huang Z, Su L, Fan Y, Guan Y, Zhang G
Phytomedicine 2022 Jun;100:154051. Epub 2022 Mar 16 doi: 10.1016/j.phymed.2022.154051. PMID: 35325827
Ramachandran RM, Srinivasan R
J Trop Pediatr 2022 Jan 7;68(1) doi: 10.1093/tropej/fmac004. PMID: 35084035
Dhali A, Dhali GK, Ghosh R, Sarkar A
Int J Mycobacteriol 2021 Jul-Sep;10(3):320-323. doi: 10.4103/ijmy.ijmy_92_21. PMID: 34494573

Prognosis

Xiang JX, Maithel SK, Weber SM, Poultsides G, Wolfgang C, Jin L, Fields RC, Weiss M, Scoggins C, Idrees K, Shen P, Zhang XF, Pawlik TM
J Gastrointest Surg 2023 Jan;27(1):105-113. Epub 2022 Nov 14 doi: 10.1007/s11605-022-05523-6. PMID: 36376722
van der Geest BAM, de Mol MJS, Barendse ISA, de Graaf JP, Bertens LCM, Poley MJ, Ista E, Kornelisse RF, Reiss IKM, Steegers EAP, Been JV; STARSHIP Study Group.
Sci Rep 2022 Aug 23;12(1):14385. doi: 10.1038/s41598-022-17933-2. PMID: 35999237Free PMC Article
Eaton JE, Haseeb A, Rupp C, Eusebi LH, van Munster K, Voitl R, Thorburn D, Ponsioen CY, Enders FT, Petersen BT, Abu Dayyeh BK, Baron TH, Chandrasekhara V, Gostout CJ, Levy MJ, Martin J, Storm AC, Dierkhising R, Kamath PS, Gores GJ, Topazian M
Hepatol Commun 2022 Apr;6(4):809-820. Epub 2021 Sep 1 doi: 10.1002/hep4.1813. PMID: 34558848Free PMC Article
Dhali A, Dhali GK, Ghosh R, Sarkar A
Int J Mycobacteriol 2021 Jul-Sep;10(3):320-323. doi: 10.4103/ijmy.ijmy_92_21. PMID: 34494573
Chaudhary RK, Higuchi R, Yazawa T, Uemura S, Izumo W, Matsunaga Y, Nagano E, Sato Y, Ota T, Furukawa T, Yamamoto M
Langenbecks Arch Surg 2021 May;406(3):791-800. Epub 2021 Feb 22 doi: 10.1007/s00423-020-02075-8. PMID: 33619629

Clinical prediction guides

Yan H, Zhou Q, Zhu H, Yang H, Wang H, Ling J, Wang J, Cao Y, Tao M
Medicine (Baltimore) 2022 Jul 22;101(29):e29675. doi: 10.1097/MD.0000000000029675. PMID: 35866789Free PMC Article
Wang L, Liu S, Li Y
Contrast Media Mol Imaging 2022;2022:3544735. Epub 2022 Jun 23 doi: 10.1155/2022/3544735. PMID: 35833072Free PMC Article
Chang PW, Schroeder AR, Lucas BP, McDaniel CE
Hosp Pediatr 2022 Apr 1;12(4):425-440. doi: 10.1542/hpeds.2021-006382. PMID: 35322269
Ramachandran RM, Srinivasan R
J Trop Pediatr 2022 Jan 7;68(1) doi: 10.1093/tropej/fmac004. PMID: 35084035
Eaton JE, Haseeb A, Rupp C, Eusebi LH, van Munster K, Voitl R, Thorburn D, Ponsioen CY, Enders FT, Petersen BT, Abu Dayyeh BK, Baron TH, Chandrasekhara V, Gostout CJ, Levy MJ, Martin J, Storm AC, Dierkhising R, Kamath PS, Gores GJ, Topazian M
Hepatol Commun 2022 Apr;6(4):809-820. Epub 2021 Sep 1 doi: 10.1002/hep4.1813. PMID: 34558848Free PMC Article

Recent systematic reviews

Belay HG, Debebe GA, Ayele AD, Kassa BG, Mihretie GN, Worke MD
World J Pediatr 2022 Nov;18(11):725-733. Epub 2022 Sep 16 doi: 10.1007/s12519-022-00597-3. PMID: 36114364
Feng Q, Huang Z, Su L, Fan Y, Guan Y, Zhang G
Phytomedicine 2022 Jun;100:154051. Epub 2022 Mar 16 doi: 10.1016/j.phymed.2022.154051. PMID: 35325827
Kujabi ML, Petersen JP, Pedersen MV, Parner ET, Henriksen TB
Pediatr Res 2021 Nov;90(5):934-949. Epub 2021 Feb 1 doi: 10.1038/s41390-020-01272-x. PMID: 33526883
Dasari BVM, Ionescu MI, Pawlik TM, Hodson J, Sutcliffe RP, Roberts KJ, Muiesan P, Isaac J, Marudanayagam R, Mirza DF
J Surg Oncol 2018 Sep;118(3):477-485. doi: 10.1002/jso.25186. PMID: 30259519
Tola HH, Ranjbaran M, Omani-Samani R, Sadeghi M
J Pediatr Urol 2018 Apr;14(2):108-115. Epub 2018 Feb 2 doi: 10.1016/j.jpurol.2018.01.004. PMID: 29456119

Supplemental Content

Table of contents

    Clinical resources

    Consumer resources

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...
    Support Center