Format

Send to:

Choose Destination

DICER1-related pleuropulmonary blastoma cancer predisposition syndrome(PPBFTDS)

MedGen UID:
825667
Concept ID:
C3839822
Neoplastic Process
Synonyms: DICER1 syndrome; PPB FAMILIAL TUMOR AND DYSPLASIA SYNDROME; PPBFTDS
SNOMED CT: DICER1 syndrome (702411003); Pleuropulmonary blastoma familial tumor and dysplasia syndrome (702411003); Pleuropulmonary blastoma family tumor susceptibility syndrome (702411003)
Modes of inheritance:
Autosomal dominant inheritance
MedGen UID:
141047
Concept ID:
C0443147
Intellectual Product
Sources: HPO, OMIM
A mode of inheritance that is observed for traits related to a gene encoded on one of the autosomes (i.e., the human chromosomes 1-22) in which a trait manifests in heterozygotes. In the context of medical genetics, an autosomal dominant disorder is caused when a single copy of the mutant allele is present. Males and females are affected equally, and can both transmit the disorder with a risk of 50% for each child of inheriting the mutant allele.
 
Gene (location): DICER1 (14q32.13)
 
Monarch Initiative: MONDO:0017288
OMIM®: 601200
Orphanet: ORPHA284343

Disease characteristics

Excerpted from the GeneReview: DICER1 Tumor Predisposition
DICER1 tumor predisposition (DICER1) is characterized by an increased risk for pleuropulmonary blastoma (PPB), pulmonary cysts, thyroid gland neoplasia (multinodular goiter, adenomas, and/or thyroid cancer), ovarian tumors (Sertoli-Leydig cell tumor, gynandroblastoma, and sarcoma), and cystic nephroma. Less commonly observed tumors include ciliary body medulloepithelioma, nasal chondromesenchymal hamartoma, embryonal rhabdomyosarcoma, pituitary blastoma, pineoblastoma, central nervous system (CNS) sarcoma, other CNS tumors, and presacral malignant teratoid tumor. The majority of tumors occur in individuals younger than age 40 years. PPB typically presents in infants and children younger than age six years. Ovarian sex cord-stromal tumors are most often diagnosed before age 40 years. Cystic nephroma generally presents in young children but has also been reported in adolescents. Additional clinical features that may be seen include macrocephaly, ocular abnormalities, structural anomalies of the kidney and collecting system, and dental anomalies (bulbous crowns). [from GeneReviews]
Authors:
Kris Ann P Schultz  |  Douglas R Stewart  |  Junne Kamihara, et. al.   view full author information

Clinical features

From HPO
Medulloblastoma
MedGen UID:
7517
Concept ID:
C0025149
Neoplastic Process
Medulloblastoma is the most common brain tumor in children. It accounts for 16% of all pediatric brain tumors, and 40% of all cerebellar tumors in childhood are medulloblastoma. Medulloblastoma occurs bimodally, with peak incidences between 3 and 4 years and 8 and 9 years of age. Approximately 10 to 15% of medulloblastomas are diagnosed in infancy. Medulloblastoma accounts for less than 1% of central nervous system (CNS) tumors in adults, with highest incidence in adults 20 to 34 years of age. In 1 to 2% of patients, medulloblastoma is associated with Gorlin syndrome (109400), a nevoid basal carcinoma syndrome. Medulloblastoma also occurs in up to 40% of patients with Turcot syndrome (see 276300). Medulloblastoma is thought to arise from neural stem cell precursors in the granular cell layer of the cerebellum. Standard treatment includes surgery, chemotherapy, and, depending on the age of the patient, radiation therapy (Crawford et al., 2007). Millard and De Braganca (2016) reviewed the histopathologic variants and molecular subgroups of medulloblastoma. Pretreatment prognosis of medulloblastoma has been refined by histopathologic subclassification into the following variants: large-cell medulloblastoma, anaplastic medulloblastoma, desmoplastic/nodular medulloblastoma, and medulloblastoma with extensive nodularity (MBEN). The latter 2 groups have been shown to have a significantly superior prognosis as compared to the large cell and anaplastic groups in young children. At the molecular level, medulloblastomas have been categorized into the following subgroups: wingless (WNT), sonic hedgehog (SHH), group 3, and group 4. Each subgroup is characterized by a unique set of genetics and gene expression as well as demographic and clinical features.
Rhabdomyosarcoma
MedGen UID:
20561
Concept ID:
C0035412
Neoplastic Process
A malignant soft tissue tumor which develops from cells of striated muscle. It is the most common form of tumor found in children and adolescents.
Pleuropulmonary blastoma
MedGen UID:
266105
Concept ID:
C1266144
Neoplastic Process
DICER1 tumor predisposition (DICER1) is characterized by an increased risk for pleuropulmonary blastoma (PPB), pulmonary cysts, thyroid gland neoplasia (multinodular goiter, adenomas, and/or thyroid cancer), ovarian tumors (Sertoli-Leydig cell tumor, gynandroblastoma, and sarcoma), and cystic nephroma. Less commonly observed tumors include ciliary body medulloepithelioma, nasal chondromesenchymal hamartoma, embryonal rhabdomyosarcoma, pituitary blastoma, pineoblastoma, central nervous system (CNS) sarcoma, other CNS tumors, and presacral malignant teratoid tumor. The majority of tumors occur in individuals younger than age 40 years. PPB typically presents in infants and children younger than age six years. Ovarian sex cord-stromal tumors are most often diagnosed before age 40 years. Cystic nephroma generally presents in young children but has also been reported in adolescents. Additional clinical features that may be seen include macrocephaly, ocular abnormalities, structural anomalies of the kidney and collecting system, and dental anomalies (bulbous crowns).
Medulloblastoma
MedGen UID:
7517
Concept ID:
C0025149
Neoplastic Process
Medulloblastoma is the most common brain tumor in children. It accounts for 16% of all pediatric brain tumors, and 40% of all cerebellar tumors in childhood are medulloblastoma. Medulloblastoma occurs bimodally, with peak incidences between 3 and 4 years and 8 and 9 years of age. Approximately 10 to 15% of medulloblastomas are diagnosed in infancy. Medulloblastoma accounts for less than 1% of central nervous system (CNS) tumors in adults, with highest incidence in adults 20 to 34 years of age. In 1 to 2% of patients, medulloblastoma is associated with Gorlin syndrome (109400), a nevoid basal carcinoma syndrome. Medulloblastoma also occurs in up to 40% of patients with Turcot syndrome (see 276300). Medulloblastoma is thought to arise from neural stem cell precursors in the granular cell layer of the cerebellum. Standard treatment includes surgery, chemotherapy, and, depending on the age of the patient, radiation therapy (Crawford et al., 2007). Millard and De Braganca (2016) reviewed the histopathologic variants and molecular subgroups of medulloblastoma. Pretreatment prognosis of medulloblastoma has been refined by histopathologic subclassification into the following variants: large-cell medulloblastoma, anaplastic medulloblastoma, desmoplastic/nodular medulloblastoma, and medulloblastoma with extensive nodularity (MBEN). The latter 2 groups have been shown to have a significantly superior prognosis as compared to the large cell and anaplastic groups in young children. At the molecular level, medulloblastomas have been categorized into the following subgroups: wingless (WNT), sonic hedgehog (SHH), group 3, and group 4. Each subgroup is characterized by a unique set of genetics and gene expression as well as demographic and clinical features.
Rhabdomyosarcoma
MedGen UID:
20561
Concept ID:
C0035412
Neoplastic Process
A malignant soft tissue tumor which develops from cells of striated muscle. It is the most common form of tumor found in children and adolescents.
Pleuropulmonary blastoma
MedGen UID:
266105
Concept ID:
C1266144
Neoplastic Process
DICER1 tumor predisposition (DICER1) is characterized by an increased risk for pleuropulmonary blastoma (PPB), pulmonary cysts, thyroid gland neoplasia (multinodular goiter, adenomas, and/or thyroid cancer), ovarian tumors (Sertoli-Leydig cell tumor, gynandroblastoma, and sarcoma), and cystic nephroma. Less commonly observed tumors include ciliary body medulloepithelioma, nasal chondromesenchymal hamartoma, embryonal rhabdomyosarcoma, pituitary blastoma, pineoblastoma, central nervous system (CNS) sarcoma, other CNS tumors, and presacral malignant teratoid tumor. The majority of tumors occur in individuals younger than age 40 years. PPB typically presents in infants and children younger than age six years. Ovarian sex cord-stromal tumors are most often diagnosed before age 40 years. Cystic nephroma generally presents in young children but has also been reported in adolescents. Additional clinical features that may be seen include macrocephaly, ocular abnormalities, structural anomalies of the kidney and collecting system, and dental anomalies (bulbous crowns).

Term Hierarchy

CClinical test,  RResearch test,  OOMIM,  GGeneReviews,  VClinVar  
  • CROGVDICER1-related pleuropulmonary blastoma cancer predisposition syndrome

Recent clinical studies

Etiology

Huryn LA, Turriff A, Harney LA, Carr AG, Chevez-Barrios P, Gombos DS, Ram R, Hufnagel RB, Hill DA, Zein WM, Schultz KAP, Bishop R, Stewart DR
Ophthalmology 2019 Feb;126(2):296-304. Epub 2018 Oct 17 doi: 10.1016/j.ophtha.2018.09.038. PMID: 30339877Free PMC Article
Herriges JC, Brown S, Longhurst M, Ozmore J, Moeschler JB, Janze A, Meck J, South ST, Andersen EF
Eur J Med Genet 2019 Jan;62(1):9-14. Epub 2018 Apr 24 doi: 10.1016/j.ejmg.2018.04.011. PMID: 29698806
Bueno MT, Martínez-Ríos C, la Puente Gregorio A, Ahyad RA, Villani A, Druker H, van Engelen K, Gallinger B, Aronoff L, Grant R, Malkin D, Greer MC
Pediatr Radiol 2017 Sep;47(10):1292-1301. Epub 2017 May 4 doi: 10.1007/s00247-017-3875-0. PMID: 28474256
Faure A, Atkinson J, Bouty A, O'Brien M, Levard G, Hutson J, Heloury Y
J Pediatr Urol 2016 Feb;12(1):5-10. Epub 2015 Sep 26 doi: 10.1016/j.jpurol.2015.08.012. PMID: 26454454

Diagnosis

Huryn LA, Turriff A, Harney LA, Carr AG, Chevez-Barrios P, Gombos DS, Ram R, Hufnagel RB, Hill DA, Zein WM, Schultz KAP, Bishop R, Stewart DR
Ophthalmology 2019 Feb;126(2):296-304. Epub 2018 Oct 17 doi: 10.1016/j.ophtha.2018.09.038. PMID: 30339877Free PMC Article
Bueno MT, Martínez-Ríos C, la Puente Gregorio A, Ahyad RA, Villani A, Druker H, van Engelen K, Gallinger B, Aronoff L, Grant R, Malkin D, Greer MC
Pediatr Radiol 2017 Sep;47(10):1292-1301. Epub 2017 May 4 doi: 10.1007/s00247-017-3875-0. PMID: 28474256

Prognosis

Faure A, Atkinson J, Bouty A, O'Brien M, Levard G, Hutson J, Heloury Y
J Pediatr Urol 2016 Feb;12(1):5-10. Epub 2015 Sep 26 doi: 10.1016/j.jpurol.2015.08.012. PMID: 26454454

Clinical prediction guides

Huryn LA, Turriff A, Harney LA, Carr AG, Chevez-Barrios P, Gombos DS, Ram R, Hufnagel RB, Hill DA, Zein WM, Schultz KAP, Bishop R, Stewart DR
Ophthalmology 2019 Feb;126(2):296-304. Epub 2018 Oct 17 doi: 10.1016/j.ophtha.2018.09.038. PMID: 30339877Free PMC Article
Bueno MT, Martínez-Ríos C, la Puente Gregorio A, Ahyad RA, Villani A, Druker H, van Engelen K, Gallinger B, Aronoff L, Grant R, Malkin D, Greer MC
Pediatr Radiol 2017 Sep;47(10):1292-1301. Epub 2017 May 4 doi: 10.1007/s00247-017-3875-0. PMID: 28474256

Supplemental Content

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center