U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 209

1.

Niemann-Pick disease, type A

The phenotype of acid sphingomyelinase deficiency (ASMD) occurs along a continuum. Individuals with the severe early-onset form, infantile neurovisceral ASMD, were historically diagnosed with Niemann-Pick disease type A (NPD-A). The later-onset, chronic visceral form of ASMD is also referred to as Niemann-Pick disease type B (NPD-B). A phenotype with intermediate severity is also known as chronic neurovisceral ASMD (NPD-A/B). The most common presenting symptom in NPD-A is hepatosplenomegaly, usually detectable by age three months; over time the liver and spleen become massive in size. Psychomotor development progresses no further than the 12-month level, after which neurologic deterioration is relentless. Failure to thrive typically becomes evident by the second year of life. A classic cherry-red spot of the macula of the retina, which may not be present in the first few months, is eventually present in all affected children. Interstitial lung disease caused by storage of sphingomyelin in pulmonary macrophages results in frequent respiratory infections and often respiratory failure. Most children succumb before the third year of life. NPD-B generally presents later than NPD-A, and the manifestations are less severe. NPD-B is characterized by progressive hepatosplenomegaly, gradual deterioration in liver and pulmonary function, osteopenia, and atherogenic lipid profile. No central nervous system (CNS) manifestations occur. Individuals with NPD-A/B have symptoms that are intermediate between NPD-A and NPD-B. The presentation in individuals with NPD-A/B varies greatly, although all are characterized by the presence of some CNS manifestations. Survival to adulthood can occur in individuals with NPD-B and NPD-A/B. [from GeneReviews]

MedGen UID:
78650
Concept ID:
C0268242
Disease or Syndrome
2.

Amyotrophic lateral sclerosis type 1

Amyotrophic lateral sclerosis is a neurodegenerative disorder characterized by the death of motor neurons in the brain, brainstem, and spinal cord, resulting in fatal paralysis. ALS usually begins with asymmetric involvement of the muscles in middle adult life. Approximately 10% of ALS cases are familial (Siddique and Deng, 1996). ALS is sometimes referred to as 'Lou Gehrig disease' after the famous American baseball player who was diagnosed with the disorder. Rowland and Shneider (2001) and Kunst (2004) provided extensive reviews of ALS. Some forms of ALS occur with frontotemporal dementia (FTD); see 105500. Ranganathan et al. (2020) provided a detailed review of the genes involved in different forms of ALS with FTD, noting that common disease pathways involve disturbances in RNA processing, autophagy, the ubiquitin proteasome system, the unfolded protein response, and intracellular trafficking. The current understanding of ALS and FTD is that some forms of these disorders represent a spectrum of disease with converging mechanisms of neurodegeneration. Familial ALS is distinct from a form of ALS with dementia reported in cases on Guam (105500) (Espinosa et al., 1962; Husquinet and Franck, 1980), in which the histology is different and dementia and parkinsonism complicate the clinical picture. Genetic Heterogeneity of Amyotrophic Lateral Sclerosis ALS is a genetically heterogeneous disorder, with several causative genes and mapped loci. ALS6 (608030) is caused by mutation in the FUS gene (137070) on chromosome 16p11; ALS8 (608627) is caused by mutation in the VAPB gene (605704) on chromosome 13; ALS9 (611895) is caused by mutation in the ANG gene (105850) on chromosome 14q11; ALS10 (612069) is caused by mutation in the TARDBP gene (605078) on 1p36; ALS11 (612577) is caused by mutation in the FIG4 gene (609390) on chromosome 6q21; ALS12 (613435) is caused by mutation in the OPTN gene (602432) on chromosome 10p13; ALS15 (300857) is caused by mutation in the UBQLN2 gene (300264) on chromosome Xp11; ALS18 (614808) is caused by mutation in the PFN1 gene (176610) on chromosome 17p13; ALS19 (615515) is caused by mutation in the ERBB4 gene (600543) on chromosome 2q34; ALS20 (615426) is caused by mutation in the HNRNPA1 gene (164017) on chromosome 12q13; ALS21 (606070) is caused by mutation in the MATR3 gene (164015) on chromosome 5q31; ALS22 (616208) is caused by mutation in the TUBA4A gene (191110) on chromosome 2q35; ALS23 (617839) is caused by mutation in the ANXA11 gene (602572) on chromosome 10q23; ALS26 (619133) is caused by mutation in the TIA1 gene (603518) on chromosome 2p13; ALS27 (620285) is caused by mutation in the SPTLC1 gene (605712) on chromosome 9q22; and ALS28 (620452) is caused by mutation in the LRP12 gene (618299) on chromosome 8q22. Loci associated with ALS have been found on chromosomes 18q21 (ALS3; 606640) and 20p13 (ALS7; 608031). Intermediate-length polyglutamine repeat expansions in the ATXN2 gene (601517) contribute to susceptibility to ALS (ALS13; 183090). Susceptibility to ALS24 (617892) is conferred by mutation in the NEK1 gene (604588) on chromosome 4q33, and susceptibility to ALS25 (617921) is conferred by mutation in the KIF5A gene (602821) on chromosome 12q13. Susceptibility to ALS has been associated with mutations in other genes, including deletions or insertions in the gene encoding the heavy neurofilament subunit (NEFH; 162230); deletions in the gene encoding peripherin (PRPH; 170710); and mutations in the dynactin gene (DCTN1; 601143). Some forms of ALS show juvenile onset. See juvenile-onset ALS2 (205100), caused by mutation in the alsin (606352) gene on 2q33; ALS4 (602433), caused by mutation in the senataxin gene (SETX; 608465) on 9q34; ALS5 (602099), caused by mutation in the SPG11 gene (610844) on 15q21; and ALS16 (614373), caused by mutation in the SIGMAR1 gene (601978) on 9p13. [from OMIM]

MedGen UID:
400169
Concept ID:
C1862939
Disease or Syndrome
3.

Rett syndrome

The spectrum of MECP2-related phenotypes in females ranges from classic Rett syndrome to variant Rett syndrome with a broader clinical phenotype (either milder or more severe than classic Rett syndrome) to mild learning disabilities; the spectrum in males ranges from severe neonatal encephalopathy to pyramidal signs, parkinsonism, and macroorchidism (PPM-X) syndrome to severe syndromic/nonsyndromic intellectual disability. Females: Classic Rett syndrome, a progressive neurodevelopmental disorder primarily affecting girls, is characterized by apparently normal psychomotor development during the first six to 18 months of life, followed by a short period of developmental stagnation, then rapid regression in language and motor skills, followed by long-term stability. During the phase of rapid regression, repetitive, stereotypic hand movements replace purposeful hand use. Additional findings include fits of screaming and inconsolable crying, autistic features, panic-like attacks, bruxism, episodic apnea and/or hyperpnea, gait ataxia and apraxia, tremors, seizures, and acquired microcephaly. Males: Severe neonatal-onset encephalopathy, the most common phenotype in affected males, is characterized by a relentless clinical course that follows a metabolic-degenerative type of pattern, abnormal tone, involuntary movements, severe seizures, and breathing abnormalities. Death often occurs before age two years. [from GeneReviews]

MedGen UID:
48441
Concept ID:
C0035372
Disease or Syndrome
4.

Nephropathic cystinosis

Cystinosis comprises three allelic phenotypes: Nephropathic cystinosis in untreated children is characterized by renal Fanconi syndrome, poor growth, hypophosphatemic/calcipenic rickets, impaired glomerular function resulting in complete glomerular failure, and accumulation of cystine in almost all cells, leading to cellular dysfunction with tissue and organ impairment. The typical untreated child has short stature, rickets, and photophobia. Failure to thrive is generally noticed after approximately age six months; signs of renal tubular Fanconi syndrome (polyuria, polydipsia, dehydration, and acidosis) appear as early as age six months; corneal crystals can be present before age one year and are always present after age 16 months. Prior to the use of renal transplantation and cystine-depleting therapy, the life span in nephropathic cystinosis was no longer than ten years. With these interventions, affected individuals can survive at least into the mid-forties or fifties with satisfactory quality of life. Intermediate cystinosis is characterized by all the typical manifestations of nephropathic cystinosis, but onset is at a later age. Renal glomerular failure occurs in all untreated affected individuals, usually between ages 15 and 25 years. The non-nephropathic (ocular) form of cystinosis is characterized clinically only by photophobia resulting from corneal cystine crystal accumulation. [from GeneReviews]

MedGen UID:
419735
Concept ID:
C2931187
Disease or Syndrome
5.

Amyotrophic lateral sclerosis, susceptibility to, 24

Amyotrophic lateral sclerosis-24 (ALS24) is a fatal neurodegenerative disease characterized by adult-onset loss of motor neurons (Brenner et al., 2016). [from OMIM]

MedGen UID:
1632999
Concept ID:
C4693523
Finding
6.

Spinocerebellar ataxia type 1

Spinocerebellar ataxia type 1 (SCA1) is characterized by progressive cerebellar ataxia, dysarthria, and eventual deterioration of bulbar functions. Early in the disease, affected individuals may have gait disturbance, slurred speech, difficulty with balance, brisk deep tendon reflexes, hypermetric saccades, nystagmus, and mild dysphagia. Later signs include slowing of saccadic velocity, development of up-gaze palsy, dysmetria, dysdiadochokinesia, and hypotonia. In advanced stages, muscle atrophy, decreased deep tendon reflexes, loss of proprioception, cognitive impairment (e.g., frontal executive dysfunction, impaired verbal memory), chorea, dystonia, and bulbar dysfunction are seen. Onset is typically in the third or fourth decade, although childhood onset and late-adult onset have been reported. Those with onset after age 60 years may manifest a pure cerebellar phenotype. Interval from onset to death varies from ten to 30 years; individuals with juvenile onset show more rapid progression and more severe disease. Anticipation is observed. An axonal sensory neuropathy detected by electrophysiologic testing is common; brain imaging typically shows cerebellar and brain stem atrophy. [from GeneReviews]

MedGen UID:
155703
Concept ID:
C0752120
Disease or Syndrome
7.

Sandhoff disease

Sandhoff disease comprises a phenotypic continuum encompassing acute infantile, subacute juvenile, and late-onset disease. Although classification into these phenotypes is somewhat arbitrary, it is helpful in understanding the variation observed in the timing of disease onset, presenting manifestations, rate of progression, and life span. Acute infantile Sandhoff disease (onset age <6 months). Infants are generally normal at birth followed by progressive weakness and slowing of developmental progress, then developmental regression and severe neurologic impairment. Seizures are common. Death usually occurs between ages two and three years. Subacute juvenile Sandhoff disease (onset age 2-5 years). After attaining normal developmental milestones, developmental progress slows, followed by developmental regression and neurologic impairment (abnormal gait, dysarthria, and cognitive decline). Death (usually from aspiration) typically occurs in the early to late teens. Late-onset Sandhoff disease (onset older teen years or young adulthood). Nearly normal psychomotor development is followed by a range of neurologic findings (e.g., weakness, spasticity, dysarthria, and deficits in cerebellar function) and psychiatric findings (e.g., deficits in executive function and memory). Life expectancy is not necessarily decreased. [from GeneReviews]

MedGen UID:
11313
Concept ID:
C0036161
Disease or Syndrome
8.

Frontotemporal dementia and/or amyotrophic lateral sclerosis 1

C9orf72 frontotemporal dementia and/or amyotrophic lateral sclerosis (C9orf72-FTD/ALS) is characterized most often by frontotemporal dementia (FTD) and upper and lower motor neuron disease (MND); however, atypical presentations also occur. Age at onset is usually between 50 and 64 years (range: 20-91 years) irrespective of the presenting manifestations, which may be pure FTD, pure amyotrophic lateral sclerosis (ALS), or a combination of the two phenotypes. The clinical presentation is highly heterogeneous and may differ between and within families, causing an unpredictable pattern and age of onset of clinical manifestations. The presence of MND correlates with an earlier age of onset and a worse overall prognosis. [from GeneReviews]

MedGen UID:
854771
Concept ID:
C3888102
Disease or Syndrome
9.

Chorea-acanthocytosis

Chorea-acanthocytosis (ChAc) is characterized by a progressive movement disorder, cognitive and behavior changes, a myopathy that can be subclinical, and chronic hyperCKemia in serum. Although the disorder is named for acanthocytosis of the red blood cells, this feature is variable. The movement disorder is mostly limb chorea, but some individuals present with parkinsonism. Dystonia is common and affects the oral region and especially the tongue, causing dysarthria and serious dysphagia with resultant weight loss. Habitual tongue and lip biting are characteristic, as well as tongue protrusion dystonia. Progressive cognitive and behavioral changes resemble those in a frontal lobe syndrome. Seizures are observed in almost half of affected individuals and can be the initial manifestation. Myopathy results in progressive distal muscle wasting and weakness. Mean age of onset in ChAc is about 30 years, although ChAc can develop as early as the first decade or as late as the seventh decade. It runs a chronic progressive course and may lead to major disability within a few years. Life expectancy is reduced, with age of death ranging from 28 to 61 years. [from GeneReviews]

MedGen UID:
98277
Concept ID:
C0393576
Disease or Syndrome
10.

Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4

Fukuyama congenital muscular dystrophy (FCMD) is characterized by hypotonia, symmetric generalized muscle weakness, and CNS migration disturbances that result in changes consistent with cobblestone lissencephaly with cerebral and cerebellar cortical dysplasia. Mild, typical, and severe phenotypes are recognized. Onset typically occurs in early infancy with poor suck, weak cry, and floppiness. Affected individuals have contractures of the hips, knees, and interphalangeal joints. Later features include myopathic facial appearance, pseudohypertrophy of the calves and forearms, motor and speech delays, intellectual disability, seizures, ophthalmologic abnormalities including visual impairment and retinal dysplasia, and progressive cardiac involvement after age ten years. Swallowing disturbance occurs in individuals with severe FCMD and in individuals older than age ten years, leading to recurrent aspiration pneumonia and death. [from GeneReviews]

MedGen UID:
140820
Concept ID:
C0410174
Disease or Syndrome
11.

Amyotrophic lateral sclerosis type 10

A neurodegenerative disease with characteristics of progressive muscular paralysis reflecting degeneration of motor neurons in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. There is evidence this disease is caused by heterozygous mutation in the TARDBP gene that encodes the TDP43 protein on chromosome 1p36. [from SNOMEDCT_US]

MedGen UID:
383137
Concept ID:
C2677565
Disease or Syndrome
12.

Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 1

POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+"). [from GeneReviews]

MedGen UID:
371919
Concept ID:
C1834846
Disease or Syndrome
13.

Central core myopathy

Congenital myopathy-1A (CMYP1A) with susceptibility to malignant hyperthermia is an autosomal dominant disorder of skeletal muscle characterized by muscle weakness primarily affecting the proximal muscles of the lower limbs beginning in infancy or early childhood, although later onset of symptoms has been reported. There is significant phenotypic variability, even within families, and the wide clinical diversity most likely depends on the severity of the RYR1 mutation. The disorder is static or slowly progressive; affected individuals typically show delayed motor development and usually achieve independent walking, although many have difficulty running or climbing stairs. Additional features often include mild facial weakness, joint laxity, shoulder girdle weakness, and skeletal manifestations, such as dislocation of the hips, foot deformities, scoliosis, and Achilles tendon contractures. Some patients present with orthopedic deformities. Serum creatine kinase is usually not elevated. Respiratory involvement is rare and there is no central nervous system or cardiac involvement. Patients with dominant mutations in the RYR1 gene are at risk for malignant hyperthermia and both disorders may segregate in the same family. Historically, patients with congenital myopathy due to RYR1 mutations were diagnosed based on the finding of pathologic central cores (central core disease; CCD) on muscle biopsy, which represent areas that lack oxidative enzymes and mitochondrial activity in type 1 muscle fibers. However, additional pathologic findings may also be observed, including cores and rods, central nuclei, fiber type disproportion, multiminicores, and uniform type 1 fibers. These histopathologic features are not always specific to RYR1 myopathy and often change over time (Quinlivan et al., 2003; Jungbluth et al., 2007; Klein et al., 2012; Ogasawara and Nishino, 2021). Some patients with RYR1 mutations have pathologic findings on muscle biopsy, but are clinically asymptomatic (Shuaib et al., 1987; Quane et al., 1993). Rare patients with a more severe phenotype have been found to carry a heterozygous mutation in the RYR1 gene inherited from an unaffected parent. However, in these cases, there is a possibility of recessive inheritance (CMYP1B; 255320) with either a missed second RYR1 mutation in trans or a genomic rearrangement on the other allele that is undetectable on routine genomic sequencing, since the RYR1 gene is very large and genetic analysis may be difficult (Klein et al., 2012). Genetic Heterogeneity of Congenital Myopathy See also CMYP1B (255320), caused by mutation in the RYR1 gene (180901) on chromosome 19q13; CMYP2A (161800), CMYP2B (620265), and CMYP2C (620278), caused by mutation in the ACTA1 gene (102610) on chromosome 1q42; CMYP3 (602771), caused by mutation in the SELENON gene (606210) on chromosome 1p36; CMYP4A (255310) and CMYP4B (609284), caused by mutation in the TPM3 gene (191030) on chromosome 1q21; CMYP5 (611705), caused by mutation in the TTN gene (188840) on chromosome 2q31; CMYP6 (605637), caused by mutation in the MYH2 gene (160740) on chromosome 17p13; CMYP7A (608358) and CMYP7B (255160), caused by mutation in the MYH7 gene (160760) on chromosome 14q11; CMYP8 (618654), caused by mutation in the ACTN2 gene (102573) on chromosome 1q43; CMYP9A (618822) and CMYP9B (618823), caused by mutation in the FXR1 gene (600819) on chromosome 3q28; CMYP10A (614399) and CMYP10B (620249), caused by mutation in the MEGF10 gene (612453) on chromosome 5q23; CMYP11 (619967), caused by mutation in the HACD1 gene (610467) on chromosome 10p12; CMYP12 (612540), caused by mutation in the CNTN1 gene (600016) on chromosome 12q12; CMYP13 (255995), caused by mutation in the STAC3 gene (615521) on chromosome 12q13; CMYP14 (618414), caused by mutation in the MYL1 gene (160780) on chromosome 2q34; CMYP15 (620161), caused by mutation in the TNNC2 gene (191039) on chromosome 20q13; CMYP16 (618524), caused by mutation in the MYBPC1 gene (160794) on chromosome 12q23; CMYP17 (618975), caused by mutation in the MYOD1 gene (159970) on chromosome 11p15; CMYP18 (620246), caused by mutation in the CACNA1S gene (114208) on chromosome 1q32; CMYP19 (618578), caused by mutation in the PAX7 gene (167410) on chromosome 1p36; CMYP20 (620310), caused by mutation in the RYR3 gene (180903) on chromosome 15q13; CMYP21 (620326), caused by mutation in the DNAJB4 gene (611327) on chromosome 1p31; CMYP22A (620351) and CMYP22B (620369), both caused by mutation in the SCN4A gene (603967) on chromosome 17q23; CMYP23 (609285), caused by mutation in the TPM2 gene (190990) on chromosome 9p13; and CMYP24 (617336), caused by mutation in the MYPN gene (608517) on chromosome 10q21. [from OMIM]

MedGen UID:
199773
Concept ID:
C0751951
Disease or Syndrome
14.

Glycogen storage disease, type IV

The clinical manifestations of glycogen storage disease type IV (GSD IV) discussed in this entry span a continuum of different subtypes with variable ages of onset, severity, and clinical features. Clinical findings vary extensively both within and between families. The fatal perinatal neuromuscular subtype presents in utero with fetal akinesia deformation sequence, including decreased fetal movements, polyhydramnios, and fetal hydrops. Death usually occurs in the neonatal period. The congenital neuromuscular subtype presents in the newborn period with profound hypotonia, respiratory distress, and dilated cardiomyopathy. Death usually occurs in early infancy. Infants with the classic (progressive) hepatic subtype may appear normal at birth, but rapidly develop failure to thrive; hepatomegaly, liver dysfunction, and progressive liver cirrhosis; hypotonia; and cardiomyopathy. Without liver transplantation, death from liver failure usually occurs by age five years. Children with the non-progressive hepatic subtype tend to present with hepatomegaly, liver dysfunction, myopathy, and hypotonia; however, they are likely to survive without progression of the liver disease and may not show cardiac, skeletal muscle, or neurologic involvement. The childhood neuromuscular subtype is rare and the course is variable, ranging from onset in the second decade with a mild disease course to a more severe, progressive course resulting in death in the third decade. [from GeneReviews]

MedGen UID:
6642
Concept ID:
C0017923
Disease or Syndrome
15.

Mitochondrial DNA depletion syndrome 9

SUCLG1-related mitochondrial DNA (mtDNA) depletion syndrome, encephalomyopathic form with methylmalonic aciduria is characterized in the majority of affected newborns by hypotonia, muscle atrophy, feeding difficulties, and lactic acidosis. Affected infants commonly manifest developmental delay / cognitive impairment, growth retardation / failure to thrive, hepatopathy, sensorineural hearing impairment, dystonia, and hypertonia. Notable findings in some affected individuals include hypertrophic cardiomyopathy, epilepsy, myoclonus, microcephaly, sleep disturbance, rhabdomyolysis, contractures, hypothermia, and/or hypoglycemia. Life span is shortened, with median survival of 20 months. [from GeneReviews]

MedGen UID:
462826
Concept ID:
C3151476
Disease or Syndrome
16.

Sialidosis type 2

Sialidosis is an autosomal recessive disorder characterized by the progressive lysosomal storage of sialylated glycopeptides and oligosaccharides caused by a deficiency of the enzyme neuraminidase. Common to the sialidoses is the accumulation and/or excretion of sialic acid (N-acetylneuraminic acid) covalently linked ('bound') to a variety of oligosaccharides and/or glycoproteins (summary by Lowden and O'Brien, 1979). The sialidoses are distinct from the sialurias in which there is storage and excretion of 'free' sialic acid, rather than 'bound' sialic acid; neuraminidase activity in sialuria is normal or elevated. Salla disease (604369) is a form of 'free' sialic acid disease. Classification Lowden and O'Brien (1979) provided a logical nosology of neuraminidase deficiency into sialidosis type I and type II. Type I is the milder form, also known as the 'normosomatic' type or the cherry red spot-myoclonus syndrome. Sialidosis type II is the more severe form with an earlier onset, and is also known as the 'dysmorphic' type. Type II has been subdivided into juvenile and infantile forms. Other terms for sialidosis type II are mucolipidosis I and lipomucopolysaccharidosis. [from OMIM]

MedGen UID:
924303
Concept ID:
C4282398
Disease or Syndrome
17.

Marinesco-Sjögren syndrome

Marinesco-Sjögren syndrome (MSS) is characterized by cerebellar ataxia with cerebellar atrophy, dysarthria, nystagmus, early-onset (not necessarily congenital) cataracts, myopathy, muscle weakness, and hypotonia. Additional features may include psychomotor delay, hypergonadotropic hypogonadism, short stature, and various skeletal abnormalities. Children with MSS usually present with muscular hypotonia in early infancy; distal and proximal muscular weakness is noticed during the first decade of life. Later, cerebellar findings of truncal ataxia, dysdiadochokinesia, nystagmus, and dysarthria become apparent. Motor function worsens progressively for some years, then stabilizes at an unpredictable age and degree of severity. Cataracts can develop rapidly and typically require lens extraction in the first decade of life. Although many adults have severe disabilities, life span in MSS appears to be near normal. [from GeneReviews]

MedGen UID:
6222
Concept ID:
C0024814
Disease or Syndrome
18.

Nemaline myopathy 2

Nemaline myopathy-2 (NEM2) is an autosomal recessive skeletal muscle disorder with a wide range of severity. The most common clinical presentation is early-onset (in infancy or childhood) muscle weakness predominantly affecting proximal limb muscles. Muscle biopsy shows accumulation of Z-disc and thin filament proteins into aggregates named 'nemaline bodies' or 'nemaline rods,' usually accompanied by disorganization of the muscle Z discs. The clinical and histologic spectrum of entities caused by variants in the NEB gene is a continuum, ranging in severity. The distribution of weakness can vary from generalized muscle weakness, more pronounced in proximal limb muscles, to distal-only involvement, although neck flexor weakness appears to be rather consistent. Histologic patterns range from a severe usually nondystrophic disturbance of the myofibrillar pattern to an almost normal pattern, with or without nemaline bodies, sometimes combined with cores (summary by Lehtokari et al., 2014). Genetic Heterogeneity of Nemaline Myopathy See also NEM1 (255310), caused by mutation in the tropomyosin-3 gene (TPM3; 191030) on chromosome 1q22; NEM3 (161800), caused by mutation in the alpha-actin-1 gene (ACTA1; 102610) on chromosome 1q42; NEM4 (609285), caused by mutation in the beta-tropomyosin gene (TPM2; 190990) on chromosome 9p13; NEM5A (605355), also known as Amish nemaline myopathy, NEM5B (620386), and NEM5C (620389), all caused by mutation in the troponin T1 gene (TNNT1; 191041) on chromosome 19q13; NEM6 (609273), caused by mutation in the KBTBD13 gene (613727) on chromosome 15q22; NEM7 (610687), caused by mutation in the cofilin-2 gene (CFL2; 601443) on chromosome 14q13; NEM8 (615348), caused by mutation in the KLHL40 gene (615340), on chromosome 3p22; NEM9 (615731), caused by mutation in the KLHL41 gene (607701) on chromosome 2q31; NEM10 (616165), caused by mutation in the LMOD3 gene (616112) on chromosome 3p14; and NEM11 (617336), caused by mutation in the MYPN gene (608517) on chromosome 10q21. Several of the genes encode components of skeletal muscle sarcomeric thin filaments (Sanoudou and Beggs, 2001). Mutations in the NEB gene are the most common cause of nemaline myopathy (Lehtokari et al., 2006). [from OMIM]

MedGen UID:
342534
Concept ID:
C1850569
Disease or Syndrome
19.

GM1 gangliosidosis type 3

GLB1-related disorders comprise two phenotypically distinct lysosomal storage disorders: GM1 gangliosidosis and mucopolysaccharidosis type IVB (MPS IVB). The phenotype of GM1 gangliosidosis constitutes a spectrum ranging from severe (infantile) to intermediate (late-infantile and juvenile) to mild (chronic/adult). Type I (infantile) GM1 gangliosidosis begins before age 12 months. Prenatal manifestations may include nonimmune hydrops fetalis, intrauterine growth restriction, and placental vacuolization; congenital dermal melanocytosis (Mongolian spots) may be observed. Macular cherry-red spot is detected on eye exam. Progressive central nervous system dysfunction leads to spasticity and rapid regression; blindness, deafness, decerebrate rigidity, seizures, feeding difficulties, and oral secretions are observed. Life expectancy is two to three years. Type II can be subdivided into the late-infantile (onset age 1-3 years) and juvenile (onset age 3-10 years) phenotypes. Central nervous system dysfunction manifests as progressive cognitive, motor, and speech decline as measured by psychometric testing. There may be mild corneal clouding, hepatosplenomegaly, and/or cardiomyopathy; the typical course is characterized by progressive neurologic decline, progressive skeletal disease in some individuals (including kyphosis and avascular necrosis of the femoral heads), and progressive feeding difficulties leading to aspiration risk. Type III begins in late childhood to the third decade with generalized dystonia leading to unsteady gait and speech disturbance followed by extrapyramidal signs including akinetic-rigid parkinsonism. Cardiomyopathy develops in some and skeletal involvement occurs in most. Intellectual impairment is common late in the disease with prognosis directly related to the degree of neurologic impairment. MPS IVB is characterized by skeletal dysplasia with specific findings of axial and appendicular dysostosis multiplex, short stature (below 15th centile in adults), kyphoscoliosis, coxa/genu valga, joint laxity, platyspondyly, and odontoid hypoplasia. First signs and symptoms may be apparent at birth. Bony involvement is progressive, with more than 84% of adults requiring ambulation aids; life span does not appear to be limited. Corneal clouding is detected in some individuals and cardiac valvular disease may develop. [from GeneReviews]

MedGen UID:
78655
Concept ID:
C0268273
Disease or Syndrome
20.

Mitochondrial DNA depletion syndrome 6 (hepatocerebral type)

MPV17-related mitochondrial DNA (mtDNA) maintenance defect presents in the vast majority of affected individuals as an early-onset encephalohepatopathic (hepatocerebral) disease that is typically associated with mtDNA depletion, particularly in the liver. A later-onset neuromyopathic disease characterized by myopathy and neuropathy, and associated with multiple mtDNA deletions in muscle, has also rarely been described. MPV17-related mtDNA maintenance defect, encephalohepatopathic form is characterized by: Hepatic manifestations (liver dysfunction that typically progresses to liver failure, cholestasis, hepatomegaly, and steatosis); Neurologic involvement (developmental delay, hypotonia, microcephaly, and motor and sensory peripheral neuropathy); Gastrointestinal manifestations (gastrointestinal dysmotility, feeding difficulties, and failure to thrive); and Metabolic derangements (lactic acidosis and hypoglycemia). Less frequent manifestations include renal tubulopathy, nephrocalcinosis, and hypoparathyroidism. Progressive liver disease often leads to death in infancy or early childhood. Hepatocellular carcinoma has been reported. [from GeneReviews]

MedGen UID:
338045
Concept ID:
C1850406
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity