U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 31

1.

Type 2 diabetes mellitus

Type 2 diabetes mellitus is distinct from maturity-onset diabetes of the young (see 606391) in that it is polygenic, characterized by gene-gene and gene-environment interactions with onset in adulthood, usually at age 40 to 60 but occasionally in adolescence if a person is obese. The pedigrees are rarely multigenerational. The penetrance is variable, possibly 10 to 40% (Fajans et al., 2001). Persons with type 2 diabetes usually have an obese body habitus and manifestations of the so-called metabolic syndrome (see 605552), which is characterized by diabetes, insulin resistance, hypertension, and hypertriglyceridemia. Genetic Heterogeneity of Susceptibility to Type 2 Diabetes Susceptibility to T2D1 (601283) is conferred by variation in the calpain-10 gene (CAPN10; 605286) on chromosome 2q37. The T2D2 locus (601407) on chromosome 12q was found in a Finnish population. The T2D3 locus (603694) maps to chromosome 20. The T2D4 locus (608036) maps to chromosome 5q34-q35. Susceptibility to T2D5 (616087) is conferred by variation in the TBC1D4 gene (612465) on chromosome 13q22. A mutation has been observed in hepatocyte nuclear factor-4-alpha (HNF4A; 600281.0004) in a French family with NIDDM of late onset. Mutations in the NEUROD1 gene (601724) on chromosome 2q32 were found to cause type 2 diabetes mellitus in 2 families. Mutation in the GLUT2 glucose transporter was associated with NIDDM in 1 patient (138160.0001). Mutation in the MAPK8IP1 gene, which encodes the islet-brain-1 protein, was found in a family with type 2 diabetes in individuals in 4 successive generations (604641.0001). Polymorphism in the KCNJ11 gene (600937.0014) confers susceptibility. In French white families, Vionnet et al. (2000) found evidence for a susceptibility locus for type 2 diabetes on 3q27-qter. They confirmed the diabetes susceptibility locus on 1q21-q24 reported by Elbein et al. (1999) in whites and by Hanson et al. (1998) in Pima Indians. A mutation in the GPD2 gene (138430.0001) on chromosome 2q24.1, encoding mitochondrial glycerophosphate dehydrogenase, was found in a patient with type 2 diabetes mellitus and in his glucose-intolerant half sister. Mutations in the PAX4 gene (167413) have been identified in patients with type 2 diabetes. Triggs-Raine et al. (2002) stated that in the Oji-Cree, a gly319-to-ser change in HNF1-alpha (142410.0008) behaves as a susceptibility allele for type 2 diabetes. Mutation in the HNF1B gene (189907.0007) was found in 2 Japanese patients with typical late-onset type 2 diabetes. Mutations in the IRS1 gene (147545) have been found in patients with type 2 diabetes. A missense mutation in the AKT2 gene (164731.0001) caused autosomal dominant type 2 diabetes in 1 family. A (single-nucleotide polymorphism) SNP in the 3-prime untranslated region of the resistin gene (605565.0001) was associated with susceptibility to diabetes and to insulin resistance-related hypertension in Chinese subjects. Susceptibility to insulin resistance has been associated with polymorphism in the TCF1 (142410.0011), PPP1R3A (600917.0001), PTPN1 (176885.0001), ENPP1 (173335.0006), IRS1 (147545.0002), and EPHX2 (132811.0001) genes. The K121Q polymorphism of ENPP1 (173335.0006) is associated with susceptibility to type 2 diabetes; a haplotype defined by 3 SNPs of this gene, including K121Q, is associated with obesity, glucose intolerance, and type 2 diabetes. A SNP in the promoter region of the hepatic lipase gene (151670.0004) predicts conversion from impaired glucose tolerance to type 2 diabetes. Variants of transcription factor 7-like-2 (TCF7L2; 602228.0001), located on 10q, have also been found to confer risk of type 2 diabetes. A common sequence variant, rs10811661, on chromosome 9p21 near the CDKN2A (600160) and CDKN2B (600431) genes has been associated with risk of type 2 diabetes. Variation in the PPARG gene (601487) has been associated with risk of type 2 diabetes. A promoter polymorphism in the IL6 gene (147620) is associated with susceptibility to NIDDM. Variation in the KCNJ15 gene (602106) has been associated with T2DM in lean Asians. Variation in the SLC30A8 gene (611145) has been associated with susceptibility to T2D. Variation in the HMGA1 gene (600701.0001) is associated with an increased risk of type 2 diabetes. Mutation in the MTNR1B gene (600804) is associated with susceptibility to type 2 diabetes. Protection Against Type 2 Diabetes Mellitus Protein-truncating variants in the SLC30A8 (611145) have been associated with a reduced risk for T2D. [from OMIM]

MedGen UID:
41523
Concept ID:
C0011860
Disease or Syndrome
2.

Bloom syndrome

Bloom syndrome (BSyn) is characterized by severe pre- and postnatal growth deficiency, immune abnormalities, sensitivity to sunlight, insulin resistance, and a high risk for many cancers that occur at an early age. Despite their very small head circumference, most affected individuals have normal intellectual ability. Women may be fertile but often have early menopause, and men tend to be infertile, with only one confirmed case of paternity. Serious medical complications that are more common than in the general population and that also appear at unusually early ages include chronic obstructive pulmonary disease, diabetes mellitus as a result of insulin resistance, and cancer of a wide variety of types and anatomic sites. [from GeneReviews]

MedGen UID:
2685
Concept ID:
C0005859
Disease or Syndrome
3.

Prader-Willi syndrome

Prader-Willi syndrome (PWS) is characterized by severe hypotonia and feeding difficulties in early infancy, followed in later infancy or early childhood by excessive eating and gradual development of morbid obesity (unless eating is externally controlled). Motor milestones and language development are delayed. All individuals have some degree of cognitive impairment. A distinctive behavioral phenotype (with temper tantrums, stubbornness, manipulative behavior, and obsessive-compulsive characteristics) is common. Hypogonadism is present in both males and females and manifests as genital hypoplasia, incomplete pubertal development, and, in most, infertility. Short stature is common (if not treated with growth hormone); characteristic facial features, strabismus, and scoliosis are often present. [from GeneReviews]

MedGen UID:
46057
Concept ID:
C0032897
Disease or Syndrome
4.

Familial partial lipodystrophy, Dunnigan type

Familial partial lipodystrophy is a metabolic disorder characterized by abnormal subcutaneous adipose tissue distribution beginning in late childhood or early adult life. Affected individuals gradually lose fat from the upper and lower extremities and the gluteal and truncal regions, resulting in a muscular appearance with prominent superficial veins. In some patients, adipose tissue accumulates on the face and neck, causing a double chin, fat neck, or cushingoid appearance. Metabolic abnormalities include insulin-resistant diabetes mellitus with acanthosis nigricans and hypertriglyceridemia; hirsutism and menstrual abnormalities occur infrequently. Familial partial lipodystrophy may also be referred to as lipoatrophic diabetes mellitus, but the essential feature is loss of subcutaneous fat (review by Garg, 2004). The disorder may be misdiagnosed as Cushing disease (see 219080) (Kobberling and Dunnigan, 1986; Garg, 2004). Genetic Heterogeneity of Familial Partial Lipodystrophy Familial partial lipodystrophy is a clinically and genetically heterogeneous disorder. Types 1 and 2 were originally described as clinical subtypes: type 1 (FPLD1; 608600), characterized by loss of subcutaneous fat confined to the limbs (Kobberling et al., 1975), and FPLD2, characterized by loss of subcutaneous fat from the limbs and trunk (Dunnigan et al., 1974; Kobberling and Dunnigan, 1986). No genetic basis for FPLD1 has yet been delineated. FPLD3 (604367) is caused by mutation in the PPARG gene (601487) on chromosome 3p25; FPLD4 (613877) is caused by mutation in the PLIN1 gene (170290) on chromosome 15q26; FPLD5 (615238) is caused by mutation in the CIDEC gene (612120) on chromosome 3p25; FPLD6 (615980) is caused by mutation in the LIPE gene (151750) on chromosome 19q13; FPLD7 (606721) is caused by mutation in the CAV1 gene (601047) on chromosome 7q31; FPLD8 (620679), caused by mutation in the ADRA2A gene (104210) on chromosome 10q25; and FPLD9 (620683), caused by mutation in the PLAAT3 gene (613867) on chromosome 11q12. [from OMIM]

MedGen UID:
354526
Concept ID:
C1720860
Disease or Syndrome
5.

Microcephalic osteodysplastic primordial dwarfism type II

Microcephalic osteodysplastic primordial dwarfism type II (MOPDII), the most common form of microcephalic primordial dwarfism, is characterized by extreme short stature and microcephaly along with distinctive facial features. Associated features that differentiate it from other forms of primordial dwarfism and that may necessitate treatment include: abnormal dentition, a slender bone skeletal dysplasia with hip deformity and/or scoliosis, insulin resistance / diabetes mellitus, chronic kidney disease, cardiac malformations, and global vascular disease. The latter includes neurovascular disease such as moyamoya vasculopathy and intracranial aneurysms (which can lead to strokes), coronary artery disease (which can lead to premature myocardial infarctions), and renal vascular disease. Hypertension, which is also common, can have multiple underlying causes given the complex comorbidities. [from GeneReviews]

MedGen UID:
96587
Concept ID:
C0432246
Disease or Syndrome
6.

Congenital generalized lipodystrophy type 2

Berardinelli-Seip congenital lipodystrophy (BSCL) is usually diagnosed at birth or soon thereafter. Because of the absence of functional adipocytes, lipid is stored in other tissues, including muscle and liver. Affected individuals develop insulin resistance and approximately 25%-35% develop diabetes mellitus between ages 15 and 20 years. Hepatomegaly secondary to hepatic steatosis and skeletal muscle hypertrophy occur in all affected individuals. Hypertrophic cardiomyopathy is reported in 20%-25% of affected individuals and is a significant cause of morbidity from cardiac failure and early mortality. [from GeneReviews]

MedGen UID:
318593
Concept ID:
C1720863
Congenital Abnormality
7.

Maturity-onset diabetes of the young type 3

MODY is a form of familial noninsulin-dependent diabetes mellitus (T2D; 125853) and is characterized by an early age of onset (childhood, adolescence, or young adulthood under 25 years) and autosomal dominant inheritance. For a phenotypic description and discussion of genetic heterogeneity of MODY, see 606391. [from OMIM]

MedGen UID:
324942
Concept ID:
C1838100
Disease or Syndrome
8.

Wolfram-like syndrome

Autosomal dominant Wolfram-like syndrome (WFSL) is characterized by the clinical triad of congenital progressive hearing impairment, diabetes mellitus, and optic atrophy. The hearing impairment, which is usually diagnosed in the first decade of life, is relatively constant and alters mainly low- and middle-frequency ranges (summary by Valero et al., 2008). Wolfram syndrome (WFS1; 222300) is an autosomal recessive allelic disorder characterized by optic atrophy, diabetes mellitus, hearing loss, and diabetes insipidus, and is caused by homozygous or compound heterozygous mutation in the WFS1 gene. An autosomal dominant syndrome involving optic atrophy with or without deafness, ophthalmoplegia, myopathy, ataxia, and neuropathy (125250), is caused by heterozygous mutation in the OPA1 gene (605290). [from OMIM]

MedGen UID:
481988
Concept ID:
C3280358
Disease or Syndrome
9.

Myotonic dystrophy type 2

Myotonic dystrophy type 2 (DM2) is characterized by myotonia and muscle dysfunction (proximal and axial weakness, myalgia, and stiffness), and less commonly by posterior subcapsular cataracts, cardiac conduction defects, insulin-insensitive type 2 diabetes mellitus, and other endocrine abnormalities. While myotonia (involuntary muscle contraction with delayed relaxation) has been reported during the first decade, onset is typically in the third to fourth decade, most commonly with fluctuating or episodic muscle pain that can be debilitating and proximal and axial weakness of the neck flexors and the hip flexors. Subsequently, weakness occurs in the elbow extensors and finger flexors. Facial weakness and weakness of the ankle dorsiflexors are less common. Myotonia rarely causes severe symptoms. In a subset of individuals, calf hypertrophy in combination with brisk reflexes is notable. [from GeneReviews]

MedGen UID:
419137
Concept ID:
C2931689
Disease or Syndrome
10.

PPARG-related familial partial lipodystrophy

A rare familial partial lipodystrophy with characteristics of adult onset of distal lipoatrophy with gluteofemoral fat loss, as well as increased fat accumulation in the face and trunk and visceral adiposity. Additional manifestations include diabetes mellitus, atherogenic dyslipidemia, eyelid xanthelasma, arterial hypertension, cardiovascular disease, hepatic steatosis, acanthosis nigricans on axilla and neck, hirsutism, and muscular hypertrophy of the lower limbs. Caused by heterozygous mutation in the PPARG gene on chromosome 3p25. [from SNOMEDCT_US]

MedGen UID:
328393
Concept ID:
C1720861
Disease or Syndrome
11.

Diabetes mellitus, transient neonatal, 2

Any transient neonatal diabetes mellitus in which the cause of the disease is a mutation in the ABCC8 gene. [from MONDO]

MedGen UID:
372150
Concept ID:
C1835887
Disease or Syndrome
12.

Maturity-onset diabetes of the young type 4

Maturity-onset diabetes of the young (MODY) is a group of several conditions characterized by abnormally high levels of blood glucose, also called blood sugar. These forms of diabetes typically begin before age 30, although they can occur later in life. In MODY, elevated blood glucose arises from reduced production of insulin, which is a hormone produced in the pancreas that helps regulate blood glucose levels. Specifically, insulin controls how much glucose (a type of sugar) is passed from the blood into cells, where it is used as an energy source.

The different types of MODY are distinguished by their genetic causes. The most common types are HNF1A-MODY (also known as MODY3), accounting for 50 to 70 percent of cases, and GCK-MODY (MODY2), accounting for 30 to 50 percent of cases. Less frequent types include HNF4A-MODY (MODY1) and renal cysts and diabetes (RCAD) syndrome (also known as HNF1B-MODY or MODY5), which each account for 5 to 10 percent of cases. At least ten other types have been identified, and these are very rare.

HNF1A-MODY and HNF4A-MODY have similar signs and symptoms that develop slowly over time. Early signs and symptoms in these types are caused by high blood glucose and may include frequent urination (polyuria), excessive thirst (polydipsia), fatigue, blurred vision, weight loss, and recurrent skin infections. Over time uncontrolled high blood glucose can damage small blood vessels in the eyes and kidneys. Damage to the light-sensitive tissue at the back of the eye (the retina) causes a condition known as diabetic retinopathy that can lead to vision loss and eventual blindness. Kidney damage (diabetic nephropathy) can lead to kidney failure and end-stage renal disease (ESRD). While these two types of MODY are very similar, certain features are particular to each type. For example, babies with HNF4A-MODY tend to weigh more than average or have abnormally low blood glucose at birth, even though other signs of the condition do not occur until childhood or young adulthood. People with HNF1A-MODY have a higher-than-average risk of developing noncancerous (benign) liver tumors known as hepatocellular adenomas.

RCAD is associated with a combination of diabetes and kidney or urinary tract abnormalities (unrelated to the elevated blood glucose), most commonly fluid-filled sacs (cysts) in the kidneys. However, the signs and symptoms are variable, even within families, and not everyone with RCAD has both features. Affected individuals may have other features unrelated to diabetes, such as abnormalities of the pancreas or liver or a form of arthritis called gout.

GCK-MODY is a very mild type of the condition. People with this type have slightly elevated blood glucose levels, particularly in the morning before eating (fasting blood glucose). However, affected individuals often have no symptoms related to the disorder, and diabetes-related complications are extremely rare. [from MedlinePlus Genetics]

MedGen UID:
318863
Concept ID:
C1833382
Disease or Syndrome
13.

DNA ligase IV deficiency

LIG4 syndrome is an autosomal recessive severe combined immunodeficiency with features of radiosensitivity, chromosomal instability, pancytopenia, and developmental and growth delay. Leukemia and dysmorphic facial features have been reported in some patients (summary by van der Burg et al., 2006). [from OMIM]

MedGen UID:
339855
Concept ID:
C1847827
Disease or Syndrome
14.

Autosomal dominant cerebellar ataxia, deafness and narcolepsy

ADCADN is an autosomal dominant neurologic disorder characterized by adult onset of progressive cerebellar ataxia, narcolepsy/cataplexy, sensorineural deafness, and dementia. More variable features include optic atrophy, sensory neuropathy, psychosis, and depression (summary by Winkelmann et al., 2012). [from OMIM]

MedGen UID:
813625
Concept ID:
C3807295
Disease or Syndrome
15.

Maturity-onset diabetes of the young type 7

GCK-MODY is a very mild type of the condition. People with this type have slightly elevated blood glucose levels, particularly in the morning before eating (fasting blood glucose). However, affected individuals often have no symptoms related to the disorder, and diabetes-related complications are extremely rare.

RCAD is associated with a combination of diabetes and kidney or urinary tract abnormalities (unrelated to the elevated blood glucose), most commonly fluid-filled sacs (cysts) in the kidneys. However, the signs and symptoms are variable, even within families, and not everyone with RCAD has both features. Affected individuals may have other features unrelated to diabetes, such as abnormalities of the pancreas or liver or a form of arthritis called gout.

HNF1A-MODY and HNF4A-MODY have similar signs and symptoms that develop slowly over time. Early signs and symptoms in these types are caused by high blood glucose and may include frequent urination (polyuria), excessive thirst (polydipsia), fatigue, blurred vision, weight loss, and recurrent skin infections. Over time uncontrolled high blood glucose can damage small blood vessels in the eyes and kidneys. Damage to the light-sensitive tissue at the back of the eye (the retina) causes a condition known as diabetic retinopathy that can lead to vision loss and eventual blindness. Kidney damage (diabetic nephropathy) can lead to kidney failure and end-stage renal disease (ESRD). While these two types of MODY are very similar, certain features are particular to each type. For example, babies with HNF4A-MODY tend to weigh more than average or have abnormally low blood glucose at birth, even though other signs of the condition do not occur until childhood or young adulthood. People with HNF1A-MODY have a higher-than-average risk of developing noncancerous (benign) liver tumors known as hepatocellular adenomas.

The different types of MODY are distinguished by their genetic causes. The most common types are HNF1A-MODY (also known as MODY3), accounting for 50 to 70 percent of cases, and GCK-MODY (MODY2), accounting for 30 to 50 percent of cases. Less frequent types include HNF4A-MODY (MODY1) and renal cysts and diabetes (RCAD) syndrome (also known as HNF1B-MODY or MODY5), which each account for 5 to 10 percent of cases. At least ten other types have been identified, and these are very rare.

Maturity-onset diabetes of the young (MODY) is a group of several conditions characterized by abnormally high levels of blood glucose, also called blood sugar. These forms of diabetes typically begin before age 30, although they can occur later in life. In MODY, elevated blood glucose arises from reduced production of insulin, which is a hormone produced in the pancreas that helps regulate blood glucose levels. Specifically, insulin controls how much glucose (a type of sugar) is passed from the blood into cells, where it is used as an energy source. [from MedlinePlus Genetics]

MedGen UID:
351232
Concept ID:
C1864839
Disease or Syndrome
16.

Sideroblastic anemia 3

Sideroblastic anemia-3 is an autosomal recessive hematologic disorder characterized by onset of anemia in adulthood. Affected individuals show signs of systemic iron overload, and iron chelation therapy may be of clinical benefit (summary by Liu et al., 2014). For a discussion of genetic heterogeneity of sideroblastic anemia, see SIDBA1 (300751). [from OMIM]

MedGen UID:
895975
Concept ID:
C4225155
Disease or Syndrome
17.

Thyroid hormone resistance, generalized, autosomal recessive

A rare, autosomal recessive inherited disorder usually caused by mutations in the THRB gene. It is characterized by a defective physiological resistance to thyroid hormones, resulting in the elevation of thyroxin and triiodothyronine in the serum. [from MONDO]

MedGen UID:
483749
Concept ID:
C3489796
Disease or Syndrome
18.

SIN3A-related intellectual disability syndrome due to a point mutation

Witteveen-Kolk syndrome (WITKOS) is an autosomal dominant disorder with characteristic distinctive facial features, microcephaly, short stature, and mildly impaired intellectual development with delayed cognitive and motor development and subtle anomalies on MRI-brain imaging (summary by Balasubramanian et al., 2021). [from OMIM]

MedGen UID:
934771
Concept ID:
C4310804
Disease or Syndrome
19.

Lipase deficiency, combined

A rare disorder caused by mutation in the LMF1 gene resulting in combined lipase deficiency with concomitant hypertriglyceridemia and associated disorders. [from NCI]

MedGen UID:
340886
Concept ID:
C1855498
Disease or Syndrome
20.

Diabetes-deafness syndrome maternally transmitted

Maternally inherited diabetes-deafness syndrome (MIDD) is a mitochondrial disorder characterized by onset of sensorineural hearing loss and diabetes in adulthood. Some patients may have additional features observed in mitochondrial disorders, including pigmentary retinopathy, ptosis, cardiomyopathy, myopathy, renal problems, and neuropsychiatric symptoms (Ballinger et al., 1992; Reardon et al., 1992; Guillausseau et al., 2001). The association of diabetes and deafness is observed with Wolfram syndrome (see 222300), Rogers syndrome (249270), and Herrmann syndrome (172500), but all 3 of these disorders have other clinical manifestations. [from OMIM]

MedGen UID:
90979
Concept ID:
C0342289
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity