Entry - #208085 - ARTHROGRYPOSIS, RENAL DYSFUNCTION, AND CHOLESTASIS 1; ARCS1 - OMIM
# 208085

ARTHROGRYPOSIS, RENAL DYSFUNCTION, AND CHOLESTASIS 1; ARCS1


Alternative titles; symbols

ARC SYNDROME; ARCS


Phenotype-Gene Relationships

Location Phenotype Phenotype
MIM number
Inheritance Phenotype
mapping key
Gene/Locus Gene/Locus
MIM number
15q26.1 Arthrogryposis, renal dysfunction, and cholestasis 1 208085 AR 3 VPS33B 608552
Clinical Synopsis
 
Phenotypic Series
 

INHERITANCE
- Autosomal recessive
GROWTH
Other
- Failure to thrive
HEAD & NECK
Head
- Microcephaly
Face
- Sloping forehead
- Micrognathia
Ears
- Low-set ears
- Hearing loss, sensorineural (in some patients)
CARDIOVASCULAR
Heart
- Structural cardiac defects (uncommon)
- Atrial septal defects
- Ventricular septal defects
- Persistent foramen ovale
- Right ventricular hypertrophy (reported in 2 sibs)
ABDOMEN
Liver
- Cholestatic liver disease
- Bile duct abnormalities (paucity, proliferation)
- Giant cell hepatitis
- Pigmentary deposits
- Portal tract fibrosis
GENITOURINARY
Kidneys
- Renal tubular acidosis
- Fanconi syndrome
- Nephropathy
- Poor corticomedullary differentiation
- Nephrocalcinosis
- Nephrogenic diabetes insipidus (less common)
- Renal tubular degeneration
SKELETAL
- Arthrogryposis multiplex congenita
- Fractures at birth
Pelvis
- Hip dysplasia
Feet
- Talipes calcaneovalgus
SKIN, NAILS, & HAIR
Skin
- Ichthyosis
- Jaundice
NEUROLOGIC
Central Nervous System
- Global developmental delay
- Hypotonia
- Corpus callosum dysgenesis (in some patients)
- Lissencephaly (reported in 1 patient)
METABOLIC FEATURES
- Metabolic acidosis
HEMATOLOGY
- Severe bleeding after biopsies (uncommon)
- Thrombocytopenia (in some patients)
- Abnormal platelet morphology
- Abnormal platelet function studies
IMMUNOLOGY
- Recurrent febrile illnesses
- B and T cell defects (reported in 2 sibs)
LABORATORY ABNORMALITIES
- Conjugated hyperbilirubinemia
- Abnormal liver function tests
- Aminoaciduria
- Glycosuria
MISCELLANEOUS
- Death in infancy, usually from sepsis, dehydration, or acidosis
MOLECULAR BASIS
- Caused by mutation in the VPS33B late endosome and lysosome associated gene (VPS33B, 608552.0001)
Arthrogryposis, renal dysfunction, and cholestasis - PS208085 - 2 Entries

TEXT

A number sign (#) is used with this entry because arthrogryposis, renal dysfunction, and cholestasis-1 (ARCS1) is caused by homozygous or compound heterozygous mutation in the VPS33B gene (608552) on chromosome 15q26.


Description

Arthrogryposis, renal dysfunction, and cholestasis-1 (ARCS1) is characterized by congenital joint contractures, renal tubular dysfunction, cholestasis with low GGT (612346) activity, severe failure to thrive, ichthyosis, and a defect in platelet alpha-granule biogenesis. Most patients with ARC do not survive past the first year of life (Gissen et al., 2006; Smith et al., 2012).

Another form of arthrogryposis, renal dysfunction, and cholestasis, ARCS2 (613404), is caused by mutation in the VIPAR gene on chromosome 14q24 (613401).


Clinical Features

In 4 male sibs from a sibship of 7 of North African descent, Nezelof et al. (1979) observed arthrogryposis multiplex congenita with jaundice and renal dysfunction. Death occurred at 2 months, 12 days, 22 days and 42 weeks of age. Autopsy showed rarefaction of the anterior horn of the spinal cord, renal tubular cell degeneration with nephrocalcinosis, and abundant pigmentary deposits in the liver which gave it a grossly black color similar to that of the Dubin-Johnson syndrome (237500). In the mother's family, 8 other males had died at birth or shortly thereafter, suggesting X-linked recessive inheritance to the authors.

Mikati et al. (1984) and Mikati (2007) described 2 Lebanese brothers with proximal renal tubular insufficiency, cholestatic jaundice, predisposition to infection, and multiple congenital anomalies. Dysmorphic features included micrognathia, low-set ears, high-arched palate, barrel-shaped chest, bilateral simian creases, clubfeet, and congenital hip dislocation. They both had conjugated hyperbilirubinemia, repeated infections, severe failure to thrive, and right ventricular hypertrophy. Liver biopsy revealed paucity of bile ducts, bile stasis, and some inflammatory cell infiltration. Immunologic investigation suggested a defect in polymorphonuclear cell migration and intracellular killing. Both died before 4 months of age.

Di Rocco et al. (1990) reported another family in which the second-born child of first-cousin parents had arthrogryposis, cholestatic liver disease, and renal dysfunction. The child died at age 2 months, and autopsy showed pigmentary storage disease in liver cells, nephrocalcinosis, and rarefaction of the motor neuron cells in the anterior horns of the spinal cord. The family of Di Rocco et al. (1990) is, of course, consistent with either autosomal recessive or X-linked recessive inheritance.

Horslen et al. (1994) described 3 cases from 2 unrelated families and reviewed 10 other cases from the literature. The association of arthrogryposis multiplex congenita, cholestatic jaundice, and renal Fanconi syndrome was first reported by Lutz-Richner and Landolt (1973). Of the 13 cases, including their own, Horslen et al. (1994) found that all of the parents were consanguineous and that all of the patients were male except for a single patient reported by Saraiva et al. (1990). All patients died in the first months of life. Although it had been claimed that there were 2 separate forms of this disorder, one with a paucity of intrahepatic bile ducts and giant cell transformation of hepatocytes and the other with pigment deposition in liver cells and marked cholestasis, Horslen et al. (1994) proposed, based on the histologic findings in one of their cases, that all cases represent variation within a single disorder.

The disorder reported in entry 210550 (biliary malformation with renal tubular insufficiency) may represent the ARC syndrome. Di Rocco et al. (1995) described 2 new families and compared clinical and pathologic findings of 5 patients from 3 Italian families with other reported cases. They proposed that all the patients reported to that time represented a single syndrome.

Abu-Sa'da et al. (2005) reported 2 infants from different consanguineous Saudi families with lethal ARC syndrome. Common clinical features included failure to thrive, jaundice, ichthyosis, generalized arthrogryposis, and hypotonia. Laboratory studies showed conjugated bilirubinemia, metabolic acidosis, and renal tubular dysfunction with Fanconi syndrome. One of the patients had nephrocalcinosis, nephrogenic diabetes insipidus, and lissencephaly. They died at ages 7 and 3 months, respectively. Abu-Sa'da et al. (2005) provided a review of the literature on ARC syndrome and noted the variability of symptoms.

Bull et al. (2006) reported a 6-month-old girl with first-cousin parents of Pakistani origin, who had ichthyosis, jaundice, and rocker-bottom feet without valgus or varus deformity, and mutation in the VPS33B gene. She had cholestasis, aminoaciduria, partial agenesis of the corpus callosum, and sensorineural deafness. She died at age 6 months with pneumonia. The authors designated this as an 'incomplete ARC syndrome' phenotype, although Gissen et al. (2006) noted that they would have classified the rocker-bottom feet in this patient as part of the arthrogryposis spectrum.

Gissen et al. (2006) characterized clinical features of 62 individuals with ARCS from 35 families (11 of which had previously been reported). All but 7 of the families had mutations in the VPS33B gene. In addition to classic features previously described, all patients had severe failure to thrive that was not adequately explained by the degree of liver disease, and 10% had structural cardiac defects. Dysmorphic features included large hands, proximally inserted thumbs, low-set ears, sloping forehead, and hirsutism. Almost half of patients who underwent diagnostic organ biopsy (7 of 16 patients) developed life-threatening hemorrhage, and most patients (9 of 11) who suffered severe hemorrhage (7 post-biopsy and 4 spontaneous) had normal platelet count and morphology. However, abnormal platelet function was observed in all 4 patients in whom it was studied, 1 of whom had normal platelet count and morphology on light microscopy. The authors also noted that although the arthrogryposis in ARC syndrome may be partially neurogenic in origin, the degree of arthrogryposis might depend on fetal position and severity of oligohydramnios.

Smith et al. (2012) studied an unrelated boy and girl who both had relatively mild ARCS and mutation in the VPS33B gene. The boy, who was of nonconsanguineous Peruvian and Puerto Rican descent, exhibited failure to thrive, developmental delay with sensorineural hearing loss, renal loss of protein and amino acids, bilateral talipes with osteopenia, and mild cholestasis. MRI showed dysmorphic ventricles with coaptation of the occipital horns and irregular lateral-ventricular marginal contours. Refractory pruritus and ichthyosis were associated with increased serum concentrations of bile acids; the pruritus responded to cutaneous biliary diversion at 3 years of age. At 5.5 years of age, the boy had severe hyperkeratosis and lichenification of hand skin that interfered with fine motor tasks, including using sign language. He had osteopenia with shortening of the proximal fibula, generalized aminoaciduria and nephrotic-range proteinuria, and recurrent episodes of epistaxis associated with the absence of platelet alpha-granules. The girl, who was born to Puerto Rican and Jualisco Mexican parents, was diagnosed with arthrogryposis and failure to thrive at 2 weeks of age. She had renal tubular dysfunction, mild cholestasis, hyperpigmented lichenified skin, bilateral hip dislocations, decreased muscle bulk, and sensorineural hearing loss. MRI at 14 months showed a thin corpus callosum and diffuse paucity of white matter. Additional features included weak dental enamel and easily chipped teeth.


Inheritance

Because of the exclusive involvement of males in early reports of this disorder and the finding in the family reported by Nezelof et al. (1979) of a large number of males on the mother's side of the family who had died at birth or shortly thereafter, this disorder had been classified as X-linked recessive. The occurrence of a female case and the universal occurrence of parental consanguinity is strong support for autosomal recessive inheritance.


Molecular Genetics

To elucidate the molecular basis of ARCS, Gissen et al. (2004) mapped the disorder to a 7-cM interval on 15q26.1 and identified germline mutations in the gene VPS33B (see, e.g., 608552.0001-608552.0003) in 14 kindreds with ARC. VPS33B encodes a homolog of the class C yeast vacuolar protein sorting protein, Vps33, that contains a Sec1-like domain important in the regulation of vesicle-to-target SNARE complex formation and subsequent membrane fusion.

In a 6-month-old girl with 'incomplete ARC syndrome,' who exhibited rocker-bottom feet, aminoaciduria, cholestasis, ichthyosis, and deafness, Bull et al. (2006) analyzed the VPS33B gene and identified homozygosity for a 1-bp deletion (c.971delA), causing a frameshift (K324fs) predicted to result in premature termination after 10 codons. Her first-cousin parents, of Pakistani origin, were heterozygous for the mutation, which was not found in 182 control chromosomes.

Gissen et al. (2006) characterized molecular features of 62 individuals with ARCS from 35 families (11 of which had been previously reported). Germline VPS33B mutations were present in 28 of 35 families (48 of 62 individuals); heterozygosity was found in the VPS33B locus in some cases of ARCS, suggesting the possibility of a second ARC syndrome gene. Gissen et al. (2006) concluded that VPS33B analysis should replace organ biopsy as a first-line diagnostic test for ARC syndrome.

In a male infant, born of first-cousin Saudi Arabian parents, with contracture deformities and multiple bone fractures at birth, Taha et al. (2007) identified compound heterozygosity for the known R438X mutation (608552.0002) and a splice site mutation (608552.0004) in the VPS33B gene. The authors commented that presentation of ARC syndrome with osteopenia and fractures at birth is unusual and can be misleading during the neonatal period when other components of the syndrome may not be evident; they also noted that compound heterozygosity is a very rare finding in a child of consanguineous parents.

In an unrelated boy and girl with relatively mild ARCS, Smith et al. (2012) identified compound heterozygosity for a splice site mutation in the VPS33B gene (608552.0005) and 2 different frameshift mutations (608552.0006 and 608552.0007, respectively). In transfection studies with co-overexpression of VIPAR (613401) and a VPS33B missense mutation (L30P; 608552.0003) that is associated with a more severe ARCS phenotype, Smith et al. (2012) observed no colocalization; however, in studies of VIPAR and the VPS33B splice site mutation, there was evidence for aggregates containing both VPS33B and VIPAR, suggesting that some of the function of the VPS33B-VIPAR complex might be retained with the splice site mutation.

Qiu et al. (2019) reported 3 unrelated deceased Chinese infants (P4, P5, and P6) with ARC syndrome and biallelic truncating mutations in the VPS33B gene (see, e.g., 608552.0012 and 608552.0013).


REFERENCES

  1. Abu-Sa'da, O., Barbar, M., Al-Harbi, N., Taha, D. Arthrogryposis, renal tubular acidosis and cholestasis (ARC) syndrome: two new cases and review. Clin. Dysmorph. 14: 191-196, 2005. [PubMed: 16155421, related citations]

  2. Bull, L. N., Mahmoodi, V., Baker, A. J., Jones, R., Strautnieks, S. S., Thompson, R. J., Knisely, A. S. VPS33B mutation with ichthyosis, cholestasis, and renal dysfunction but without arthrogryposis: incomplete ARC syndrome phenotype. J. Pediat. 148: 269-271, 2006. [PubMed: 16492441, related citations] [Full Text]

  3. Di Rocco, M., Callea, F., Pollice, B., Faraci, M., Campiani, F., Borrone, C. Arthrogryposis, renal dysfunction and cholestasis syndrome: report of five patients from three Italian families. Europ. J. Pediat. 154: 835-839, 1995. [PubMed: 8529684, related citations] [Full Text]

  4. Di Rocco, M., Reboa, E., Barabino, A., Larnaout, A., Canepa, M., Savioli, C., Cremonte, M., Borrone, C. Arthrogryposis, cholestatic pigmentary liver disease and renal dysfunction: report of a second family. Am. J. Med. Genet. 37: 237-240, 1990. [PubMed: 2248291, related citations] [Full Text]

  5. Gissen, P., Johnson, C. A., Morgan, N. V., Stapelbroek, J. M., Forshew, T., Cooper, W. N., McKiernan, P. J., Klomp, L. W. J., Morris, A. A. M., Wraith, J. E., McClean, P., Lynch, S. A., and 12 others. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nature Genet. 36: 400-404, 2004. [PubMed: 15052268, related citations] [Full Text]

  6. Gissen, P., Tee, L., Johnson, C. A., Genin, E., Caliebe, A., Chitayat, D., Clericuzio, C., Denecke, J., Di Rocco, M., Fischler, B., FitzPatrick, D., Garcia-Cazorla, A., and 9 others. Clinical and molecular genetic features of ARC syndrome. Hum. Genet. 120: 396-409, 2006. [PubMed: 16896922, related citations] [Full Text]

  7. Horslen, S. P., Quarrell, O. W. J., Tanner, M. S. Liver histology in the arthrogryposis multiplex congenita, renal dysfunction, and cholestasis (ARC) syndrome: report of three new cases and review. J. Med. Genet. 31: 62-64, 1994. [PubMed: 8151641, related citations] [Full Text]

  8. Lutz-Richner, A. R., Landolt, R. F. Familiaere Gallengangmissbildungen mit tubulaerer Niereninsuffizienz. Helv. Paediat. Acta 28: 1-12, 1973.

  9. Mikati, M. A., Barakat, A. Y., Sulh, H. B., Der Kaloustian, V. M. Renal tubular insufficiency, cholestatic jaundice, and multiple congenital anomalies--a new multisystem syndrome. Helv. Paediat. Acta 39: 463-471, 1984. [PubMed: 6543856, related citations]

  10. Mikati, M. A. Arthrogryposis, renal tubular acidosis and cholestasis syndrome: spectrum of the clinical manifestations. (Letter) Clin. Dysmorph. 16: 71 only, 2007. [PubMed: 17159523, related citations] [Full Text]

  11. Nezelof, C., Dupart, M. C., Jaubert, F., Eliachar, E. A lethal familial syndrome associating arthrogryposis multiplex congenita, renal dysfunction, and a cholestatic and pigmentary liver disease. J. Pediat. 94: 258-260, 1979. [PubMed: 762621, related citations] [Full Text]

  12. Qiu, Y.-L., Liu, T., Abuduxikuer, K., Hao, C.-Z., Gong, J.-Y., Zhang, M.-H., Li, L.-T., Yan, Y.-Y., Li, J.-Q., Wang, J.-S. Novel missense mutation in VPS33B is associated with isolated low gamma-glutamyltransferase cholestasis: Attenuated, incomplete phenotype of arthrogryposis, renal dysfunction, and cholestasis syndrome. Hum. Mutat. 40: 2247-2257, 2019. [PubMed: 31479177, related citations] [Full Text]

  13. Saraiva, J. M., Lemos, C., Goncalves, I., Carneiro, F., Mota, H. C. Arthrogryposis multiplex congenita with renal and hepatic abnormalities in a female infant. J. Pediat. 117: 761-763, 1990. [PubMed: 2231211, related citations] [Full Text]

  14. Smith, H., Galmes, R., Gogolina, E., Straatman-Iwanowska, A., Reay, K., Banushi, B., Bruce, C. K., Cullinane, A. R., Romero, R., Chang, R., Ackermann, O., Baumann, C., and 12 others. Associations among genotype, clinical phenotype, and intracellular localization of trafficking proteins in ARC syndrome. Hum. Mutat. 33: 1656-1664, 2012. [PubMed: 22753090, images, related citations] [Full Text]

  15. Taha, D., Khider, A., Cullinane, A. R., Gissen, P. A novel VPS33B mutation in an ARC syndrome patient presenting with osteopenia and fractures at birth. (Letter) Am. J. Med. Genet. 143A: 2835-2837, 2007. [PubMed: 17994566, related citations] [Full Text]


Marla J. F. O'Neill - updated : 08/18/2022
Marla J. F. O'Neill - updated : 11/19/2013
Marla J. F. O'Neill - updated : 5/13/2010
Cassandra L. Kniffin - updated : 2/13/2009
Marla J. F. O'Neill - updated : 4/24/2008
Marla J. F. O'Neill - updated : 2/15/2007
Victor A. McKusick - updated : 4/5/2004
Victor A. McKusick - updated : 5/13/1997
Creation Date:
Victor A. McKusick : 4/4/1994
alopez : 08/18/2022
carol : 06/08/2016
carol : 11/19/2013
mcolton : 11/15/2013
mcolton : 11/15/2013
carol : 8/22/2011
carol : 5/13/2010
carol : 5/13/2010
wwang : 4/16/2009
ckniffin : 2/13/2009
wwang : 4/28/2008
terry : 4/24/2008
wwang : 2/15/2007
alopez : 4/6/2004
terry : 4/5/2004
terry : 7/9/1997
jenny : 5/13/1997
terry : 5/7/1997
carol : 4/4/1994

# 208085

ARTHROGRYPOSIS, RENAL DYSFUNCTION, AND CHOLESTASIS 1; ARCS1


Alternative titles; symbols

ARC SYNDROME; ARCS


SNOMEDCT: 720513002;   ORPHA: 2697;   DO: 0111353;  


Phenotype-Gene Relationships

Location Phenotype Phenotype
MIM number
Inheritance Phenotype
mapping key
Gene/Locus Gene/Locus
MIM number
15q26.1 Arthrogryposis, renal dysfunction, and cholestasis 1 208085 Autosomal recessive 3 VPS33B 608552

TEXT

A number sign (#) is used with this entry because arthrogryposis, renal dysfunction, and cholestasis-1 (ARCS1) is caused by homozygous or compound heterozygous mutation in the VPS33B gene (608552) on chromosome 15q26.


Description

Arthrogryposis, renal dysfunction, and cholestasis-1 (ARCS1) is characterized by congenital joint contractures, renal tubular dysfunction, cholestasis with low GGT (612346) activity, severe failure to thrive, ichthyosis, and a defect in platelet alpha-granule biogenesis. Most patients with ARC do not survive past the first year of life (Gissen et al., 2006; Smith et al., 2012).

Another form of arthrogryposis, renal dysfunction, and cholestasis, ARCS2 (613404), is caused by mutation in the VIPAR gene on chromosome 14q24 (613401).


Clinical Features

In 4 male sibs from a sibship of 7 of North African descent, Nezelof et al. (1979) observed arthrogryposis multiplex congenita with jaundice and renal dysfunction. Death occurred at 2 months, 12 days, 22 days and 42 weeks of age. Autopsy showed rarefaction of the anterior horn of the spinal cord, renal tubular cell degeneration with nephrocalcinosis, and abundant pigmentary deposits in the liver which gave it a grossly black color similar to that of the Dubin-Johnson syndrome (237500). In the mother's family, 8 other males had died at birth or shortly thereafter, suggesting X-linked recessive inheritance to the authors.

Mikati et al. (1984) and Mikati (2007) described 2 Lebanese brothers with proximal renal tubular insufficiency, cholestatic jaundice, predisposition to infection, and multiple congenital anomalies. Dysmorphic features included micrognathia, low-set ears, high-arched palate, barrel-shaped chest, bilateral simian creases, clubfeet, and congenital hip dislocation. They both had conjugated hyperbilirubinemia, repeated infections, severe failure to thrive, and right ventricular hypertrophy. Liver biopsy revealed paucity of bile ducts, bile stasis, and some inflammatory cell infiltration. Immunologic investigation suggested a defect in polymorphonuclear cell migration and intracellular killing. Both died before 4 months of age.

Di Rocco et al. (1990) reported another family in which the second-born child of first-cousin parents had arthrogryposis, cholestatic liver disease, and renal dysfunction. The child died at age 2 months, and autopsy showed pigmentary storage disease in liver cells, nephrocalcinosis, and rarefaction of the motor neuron cells in the anterior horns of the spinal cord. The family of Di Rocco et al. (1990) is, of course, consistent with either autosomal recessive or X-linked recessive inheritance.

Horslen et al. (1994) described 3 cases from 2 unrelated families and reviewed 10 other cases from the literature. The association of arthrogryposis multiplex congenita, cholestatic jaundice, and renal Fanconi syndrome was first reported by Lutz-Richner and Landolt (1973). Of the 13 cases, including their own, Horslen et al. (1994) found that all of the parents were consanguineous and that all of the patients were male except for a single patient reported by Saraiva et al. (1990). All patients died in the first months of life. Although it had been claimed that there were 2 separate forms of this disorder, one with a paucity of intrahepatic bile ducts and giant cell transformation of hepatocytes and the other with pigment deposition in liver cells and marked cholestasis, Horslen et al. (1994) proposed, based on the histologic findings in one of their cases, that all cases represent variation within a single disorder.

The disorder reported in entry 210550 (biliary malformation with renal tubular insufficiency) may represent the ARC syndrome. Di Rocco et al. (1995) described 2 new families and compared clinical and pathologic findings of 5 patients from 3 Italian families with other reported cases. They proposed that all the patients reported to that time represented a single syndrome.

Abu-Sa'da et al. (2005) reported 2 infants from different consanguineous Saudi families with lethal ARC syndrome. Common clinical features included failure to thrive, jaundice, ichthyosis, generalized arthrogryposis, and hypotonia. Laboratory studies showed conjugated bilirubinemia, metabolic acidosis, and renal tubular dysfunction with Fanconi syndrome. One of the patients had nephrocalcinosis, nephrogenic diabetes insipidus, and lissencephaly. They died at ages 7 and 3 months, respectively. Abu-Sa'da et al. (2005) provided a review of the literature on ARC syndrome and noted the variability of symptoms.

Bull et al. (2006) reported a 6-month-old girl with first-cousin parents of Pakistani origin, who had ichthyosis, jaundice, and rocker-bottom feet without valgus or varus deformity, and mutation in the VPS33B gene. She had cholestasis, aminoaciduria, partial agenesis of the corpus callosum, and sensorineural deafness. She died at age 6 months with pneumonia. The authors designated this as an 'incomplete ARC syndrome' phenotype, although Gissen et al. (2006) noted that they would have classified the rocker-bottom feet in this patient as part of the arthrogryposis spectrum.

Gissen et al. (2006) characterized clinical features of 62 individuals with ARCS from 35 families (11 of which had previously been reported). All but 7 of the families had mutations in the VPS33B gene. In addition to classic features previously described, all patients had severe failure to thrive that was not adequately explained by the degree of liver disease, and 10% had structural cardiac defects. Dysmorphic features included large hands, proximally inserted thumbs, low-set ears, sloping forehead, and hirsutism. Almost half of patients who underwent diagnostic organ biopsy (7 of 16 patients) developed life-threatening hemorrhage, and most patients (9 of 11) who suffered severe hemorrhage (7 post-biopsy and 4 spontaneous) had normal platelet count and morphology. However, abnormal platelet function was observed in all 4 patients in whom it was studied, 1 of whom had normal platelet count and morphology on light microscopy. The authors also noted that although the arthrogryposis in ARC syndrome may be partially neurogenic in origin, the degree of arthrogryposis might depend on fetal position and severity of oligohydramnios.

Smith et al. (2012) studied an unrelated boy and girl who both had relatively mild ARCS and mutation in the VPS33B gene. The boy, who was of nonconsanguineous Peruvian and Puerto Rican descent, exhibited failure to thrive, developmental delay with sensorineural hearing loss, renal loss of protein and amino acids, bilateral talipes with osteopenia, and mild cholestasis. MRI showed dysmorphic ventricles with coaptation of the occipital horns and irregular lateral-ventricular marginal contours. Refractory pruritus and ichthyosis were associated with increased serum concentrations of bile acids; the pruritus responded to cutaneous biliary diversion at 3 years of age. At 5.5 years of age, the boy had severe hyperkeratosis and lichenification of hand skin that interfered with fine motor tasks, including using sign language. He had osteopenia with shortening of the proximal fibula, generalized aminoaciduria and nephrotic-range proteinuria, and recurrent episodes of epistaxis associated with the absence of platelet alpha-granules. The girl, who was born to Puerto Rican and Jualisco Mexican parents, was diagnosed with arthrogryposis and failure to thrive at 2 weeks of age. She had renal tubular dysfunction, mild cholestasis, hyperpigmented lichenified skin, bilateral hip dislocations, decreased muscle bulk, and sensorineural hearing loss. MRI at 14 months showed a thin corpus callosum and diffuse paucity of white matter. Additional features included weak dental enamel and easily chipped teeth.


Inheritance

Because of the exclusive involvement of males in early reports of this disorder and the finding in the family reported by Nezelof et al. (1979) of a large number of males on the mother's side of the family who had died at birth or shortly thereafter, this disorder had been classified as X-linked recessive. The occurrence of a female case and the universal occurrence of parental consanguinity is strong support for autosomal recessive inheritance.


Molecular Genetics

To elucidate the molecular basis of ARCS, Gissen et al. (2004) mapped the disorder to a 7-cM interval on 15q26.1 and identified germline mutations in the gene VPS33B (see, e.g., 608552.0001-608552.0003) in 14 kindreds with ARC. VPS33B encodes a homolog of the class C yeast vacuolar protein sorting protein, Vps33, that contains a Sec1-like domain important in the regulation of vesicle-to-target SNARE complex formation and subsequent membrane fusion.

In a 6-month-old girl with 'incomplete ARC syndrome,' who exhibited rocker-bottom feet, aminoaciduria, cholestasis, ichthyosis, and deafness, Bull et al. (2006) analyzed the VPS33B gene and identified homozygosity for a 1-bp deletion (c.971delA), causing a frameshift (K324fs) predicted to result in premature termination after 10 codons. Her first-cousin parents, of Pakistani origin, were heterozygous for the mutation, which was not found in 182 control chromosomes.

Gissen et al. (2006) characterized molecular features of 62 individuals with ARCS from 35 families (11 of which had been previously reported). Germline VPS33B mutations were present in 28 of 35 families (48 of 62 individuals); heterozygosity was found in the VPS33B locus in some cases of ARCS, suggesting the possibility of a second ARC syndrome gene. Gissen et al. (2006) concluded that VPS33B analysis should replace organ biopsy as a first-line diagnostic test for ARC syndrome.

In a male infant, born of first-cousin Saudi Arabian parents, with contracture deformities and multiple bone fractures at birth, Taha et al. (2007) identified compound heterozygosity for the known R438X mutation (608552.0002) and a splice site mutation (608552.0004) in the VPS33B gene. The authors commented that presentation of ARC syndrome with osteopenia and fractures at birth is unusual and can be misleading during the neonatal period when other components of the syndrome may not be evident; they also noted that compound heterozygosity is a very rare finding in a child of consanguineous parents.

In an unrelated boy and girl with relatively mild ARCS, Smith et al. (2012) identified compound heterozygosity for a splice site mutation in the VPS33B gene (608552.0005) and 2 different frameshift mutations (608552.0006 and 608552.0007, respectively). In transfection studies with co-overexpression of VIPAR (613401) and a VPS33B missense mutation (L30P; 608552.0003) that is associated with a more severe ARCS phenotype, Smith et al. (2012) observed no colocalization; however, in studies of VIPAR and the VPS33B splice site mutation, there was evidence for aggregates containing both VPS33B and VIPAR, suggesting that some of the function of the VPS33B-VIPAR complex might be retained with the splice site mutation.

Qiu et al. (2019) reported 3 unrelated deceased Chinese infants (P4, P5, and P6) with ARC syndrome and biallelic truncating mutations in the VPS33B gene (see, e.g., 608552.0012 and 608552.0013).


REFERENCES

  1. Abu-Sa'da, O., Barbar, M., Al-Harbi, N., Taha, D. Arthrogryposis, renal tubular acidosis and cholestasis (ARC) syndrome: two new cases and review. Clin. Dysmorph. 14: 191-196, 2005. [PubMed: 16155421]

  2. Bull, L. N., Mahmoodi, V., Baker, A. J., Jones, R., Strautnieks, S. S., Thompson, R. J., Knisely, A. S. VPS33B mutation with ichthyosis, cholestasis, and renal dysfunction but without arthrogryposis: incomplete ARC syndrome phenotype. J. Pediat. 148: 269-271, 2006. [PubMed: 16492441] [Full Text: https://doi.org/10.1016/j.jpeds.2005.10.005]

  3. Di Rocco, M., Callea, F., Pollice, B., Faraci, M., Campiani, F., Borrone, C. Arthrogryposis, renal dysfunction and cholestasis syndrome: report of five patients from three Italian families. Europ. J. Pediat. 154: 835-839, 1995. [PubMed: 8529684] [Full Text: https://doi.org/10.1007/BF01959793]

  4. Di Rocco, M., Reboa, E., Barabino, A., Larnaout, A., Canepa, M., Savioli, C., Cremonte, M., Borrone, C. Arthrogryposis, cholestatic pigmentary liver disease and renal dysfunction: report of a second family. Am. J. Med. Genet. 37: 237-240, 1990. [PubMed: 2248291] [Full Text: https://doi.org/10.1002/ajmg.1320370214]

  5. Gissen, P., Johnson, C. A., Morgan, N. V., Stapelbroek, J. M., Forshew, T., Cooper, W. N., McKiernan, P. J., Klomp, L. W. J., Morris, A. A. M., Wraith, J. E., McClean, P., Lynch, S. A., and 12 others. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nature Genet. 36: 400-404, 2004. [PubMed: 15052268] [Full Text: https://doi.org/10.1038/ng1325]

  6. Gissen, P., Tee, L., Johnson, C. A., Genin, E., Caliebe, A., Chitayat, D., Clericuzio, C., Denecke, J., Di Rocco, M., Fischler, B., FitzPatrick, D., Garcia-Cazorla, A., and 9 others. Clinical and molecular genetic features of ARC syndrome. Hum. Genet. 120: 396-409, 2006. [PubMed: 16896922] [Full Text: https://doi.org/10.1007/s00439-006-0232-z]

  7. Horslen, S. P., Quarrell, O. W. J., Tanner, M. S. Liver histology in the arthrogryposis multiplex congenita, renal dysfunction, and cholestasis (ARC) syndrome: report of three new cases and review. J. Med. Genet. 31: 62-64, 1994. [PubMed: 8151641] [Full Text: https://doi.org/10.1136/jmg.31.1.62]

  8. Lutz-Richner, A. R., Landolt, R. F. Familiaere Gallengangmissbildungen mit tubulaerer Niereninsuffizienz. Helv. Paediat. Acta 28: 1-12, 1973.

  9. Mikati, M. A., Barakat, A. Y., Sulh, H. B., Der Kaloustian, V. M. Renal tubular insufficiency, cholestatic jaundice, and multiple congenital anomalies--a new multisystem syndrome. Helv. Paediat. Acta 39: 463-471, 1984. [PubMed: 6543856]

  10. Mikati, M. A. Arthrogryposis, renal tubular acidosis and cholestasis syndrome: spectrum of the clinical manifestations. (Letter) Clin. Dysmorph. 16: 71 only, 2007. [PubMed: 17159523] [Full Text: https://doi.org/10.1097/01.mcd.0000220607.32531.1b]

  11. Nezelof, C., Dupart, M. C., Jaubert, F., Eliachar, E. A lethal familial syndrome associating arthrogryposis multiplex congenita, renal dysfunction, and a cholestatic and pigmentary liver disease. J. Pediat. 94: 258-260, 1979. [PubMed: 762621] [Full Text: https://doi.org/10.1016/s0022-3476(79)80839-2]

  12. Qiu, Y.-L., Liu, T., Abuduxikuer, K., Hao, C.-Z., Gong, J.-Y., Zhang, M.-H., Li, L.-T., Yan, Y.-Y., Li, J.-Q., Wang, J.-S. Novel missense mutation in VPS33B is associated with isolated low gamma-glutamyltransferase cholestasis: Attenuated, incomplete phenotype of arthrogryposis, renal dysfunction, and cholestasis syndrome. Hum. Mutat. 40: 2247-2257, 2019. [PubMed: 31479177] [Full Text: https://doi.org/10.1002/humu.23770]

  13. Saraiva, J. M., Lemos, C., Goncalves, I., Carneiro, F., Mota, H. C. Arthrogryposis multiplex congenita with renal and hepatic abnormalities in a female infant. J. Pediat. 117: 761-763, 1990. [PubMed: 2231211] [Full Text: https://doi.org/10.1016/s0022-3476(05)83339-6]

  14. Smith, H., Galmes, R., Gogolina, E., Straatman-Iwanowska, A., Reay, K., Banushi, B., Bruce, C. K., Cullinane, A. R., Romero, R., Chang, R., Ackermann, O., Baumann, C., and 12 others. Associations among genotype, clinical phenotype, and intracellular localization of trafficking proteins in ARC syndrome. Hum. Mutat. 33: 1656-1664, 2012. [PubMed: 22753090] [Full Text: https://doi.org/10.1002/humu.22155]

  15. Taha, D., Khider, A., Cullinane, A. R., Gissen, P. A novel VPS33B mutation in an ARC syndrome patient presenting with osteopenia and fractures at birth. (Letter) Am. J. Med. Genet. 143A: 2835-2837, 2007. [PubMed: 17994566] [Full Text: https://doi.org/10.1002/ajmg.a.32051]


Contributors:
Marla J. F. O'Neill - updated : 08/18/2022
Marla J. F. O'Neill - updated : 11/19/2013
Marla J. F. O'Neill - updated : 5/13/2010
Cassandra L. Kniffin - updated : 2/13/2009
Marla J. F. O'Neill - updated : 4/24/2008
Marla J. F. O'Neill - updated : 2/15/2007
Victor A. McKusick - updated : 4/5/2004
Victor A. McKusick - updated : 5/13/1997

Creation Date:
Victor A. McKusick : 4/4/1994

Edit History:
alopez : 08/18/2022
carol : 06/08/2016
carol : 11/19/2013
mcolton : 11/15/2013
mcolton : 11/15/2013
carol : 8/22/2011
carol : 5/13/2010
carol : 5/13/2010
wwang : 4/16/2009
ckniffin : 2/13/2009
wwang : 4/28/2008
terry : 4/24/2008
wwang : 2/15/2007
alopez : 4/6/2004
terry : 4/5/2004
terry : 7/9/1997
jenny : 5/13/1997
terry : 5/7/1997
carol : 4/4/1994