Entry - *516004 - COMPLEX I, SUBUNIT ND4L; MTND4L - OMIM
* 516004

COMPLEX I, SUBUNIT ND4L; MTND4L


Alternative titles; symbols

NADH-UBIQUINONE OXIDOREDUCTASE, SUBUNIT ND4L
NADH DEHYDROGENASE, SUBUNIT 4L; NADH4L


HGNC Approved Gene Symbol: MT-ND4L


TEXT

Description

Subunit 4L is 1 of the 7 mitochondrial DNA (mtDNA)-encoded subunits (MTND1, MTND2, MTND3, MTND4, MTND4L, MTND5, MTND6) included among the approximately 41 polypeptides of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3) (Shoffner and Wallace, 1995; Arizmendi et al., 1992; Walker et al., 1992; Anderson et al., 1981; Attardi et al., 1986; Chomyn et al. (1985, 1986); Wallace et al., 1986; Oliver and Wallace, 1982; Wallace et al., 1994). Complex I accepts electrons from NADH, transfers them to ubiquinone (coenzyme Q10), and uses the energy released to pump protons out across the mitochondrial inner membrane. Complex I is more fully described under 516000. MTND4L is probably a component of the hydrophobic protein fragment of the complex (Ragan, 1987).


Mapping

MTND4L is encoded by the guanine-rich heavy (H) strand of the mtDNA and located between nucleotide pairs (nps) 10470 and 10766 (Anderson et al., 1981; Wallace et al., 1994). It is maternally inherited along with the mtDNA (Giles et al., 1980; Case and Wallace, 1981).


Gene Structure

The MTND4L gene encompasses 285 nps of continuous coding sequence and lacks introns. It is a part of a bicistronic mRNA, occupying the 5-prime end while its companion gene, MTND4, occupies the 3-prime end. This mRNA begins with the AUG methionine codon of MTND4L and ends with a stop codon. The terminal 7 nps of MTND4L overlap with the initiation methionine and the next leucine of MTND4 (Anderson et al., 1981). The bicistronic MTND4L+MTND5 mRNA is transcribed as a part of the polycistronic H-strand transcript, flanked by tRNAArg at the 5-prime end and tRNAHis at the 3-prime end. These tRNAs are cleaved from the transcript freeing transcript 7, the MTND4L+MTND4 mRNA. The mRNA is then polyadenylated completing the MTND4 termination codon (Anderson et al., 1981; Ojala et al., 1981; Attardi et al., 1982; Wallace et al., 1994).


Gene Function

The predicted polypeptide molecular weight is 10.7 kD (Anderson et al., 1981; Wallace et al., 1994). However, the apparent molecular weight upon SDS-polyacrylamide gel electrophoresis (PAGE) using Tris-glycine buffer is 14.5 kD (Wallace et al., 1986; Oliver et al., 1984) whereas for urea-phosphate gels, it is 3.5 kD (Chomyn et al., 1985).

Using a yeast 2-hybrid screen and pull-down assays, Li et al. (2005) found that nonstructural protein-10 (NSP10) of SARS coronavirus interacted with components of cellular mitochondria, including NADH4L and cytochrome oxidase II (MTCO2; 516040). Human cells transfected with NSP10 showed altered NADH-cytochrome activity and depolarization of the inner mitochondrial membrane. Moreover, NSP10 appeared to amplify the cytopathic effect of infection with the coronavirus 229E strain.


Molecular Genetics

Restriction site polymorphisms have been identified at the following nucleotide position for the indicated enzymes (where '+' = site gain, '-' = site loss relative to the reference sequence, Anderson et al., 1981): Alu I: +10536/10413, -10598, +10694; Dde I: -10631, +10746; Hae III: -10689, +10725; Rsa I: +10644, +10656, -10737 (Wallace et al., 1994).


ALLELIC VARIANTS ( 2 Selected Examples):

.0001 COLORECTAL CANCER

MTND4L, CYS32ARG
  
RCV000010352

Early on, Warburg (1956) suggested that alterations of oxidative phosphorylation in tumor cells play a causative role in cancerous growth. Interest in the mitochondria with regard to neoplasia has revived, largely because of their role in apoptosis and other aspects of tumor biology. The mitochondrial genome is particularly susceptible to mutations because of the high level of reactive oxygen species (ROS) generated in this organelle, coupled with a low level of DNA repair. In a colorectal cancer, Polyak et al. (1998) found a 10563T-C transition resulting in a cys32-to-arg amino acid substitution in the MTND4L protein.


.0002 LEBER OPTIC ATROPHY

MTND4L, 10663T-C
  
RCV000010353...

Approximately 90% of Leber optic atrophy (LHON; 535000) cases are caused by 3460A (516000.0001), 11778A (516003.0001), or 14484C (516006.0001) mtDNA mutations. These are designated 'primary' mutations because they impart a high risk for LHON expression. The 11778A and 14484C mutations are preferentially associated with mtDNA haplogroup J, 1 of 9 Western Eurasian mtDNA lineages, suggesting a synergistic and deleterious interaction between these LHON mutations and haplogroup J polymorphism(s). Brown et al. (2002) reported a novel primary LHON mutation in the ND4L gene. A homoplasmic T-to-C transition at nucleotide 10663 was found in 3 independent LHON patients who lacked a known primary mutation and all of whom belonged to haplogroup J. Phylogenetic analysis with primarily complete mtDNA sequence data demonstrated that the 10663C mutation had arisen at least 3 independent times in haplogroup J, indicating that it is not a rare lineage-specific polymorphism. Analysis of complex I function in patient lymphoblasts and transmitochondrial cybrids revealed a partial complex I defect similar in magnitude to the 14484C mutation. Brown et al. (2002) concluded that 10663C is a primary LHON mutation that is pathogenic when cooccurring with haplogroup J. The results supported a role for haplogroup J in the expression of certain LHON mutations.


See Also:

REFERENCES

  1. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., Young, I. G. Sequence and organization of the human mitochondrial genome. Nature 290: 457-465, 1981. [PubMed: 7219534, related citations] [Full Text]

  2. Arizmendi, J. M., Skehel, J. M., Runswick, M. J., Fearnley, I. M., Walker, J. E. Complementary DNA sequences of two 14.5 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria: complementation of the primary structure of the complex FEBS Lett. 313: 80-84, 1992. [PubMed: 1426273, related citations] [Full Text]

  3. Attardi, G., Chomyn, A., Doolittle, R. F., Mariottini, P., Ragan, C. I. Seven unidentified reading frames of human mitochondrial DNA encode subunits of the respiratory chain NADH dehydrogenase. Cold Spring Harbor Symp. Quant. Biol. 51: 103-114, 1986. [PubMed: 3472707, related citations] [Full Text]

  4. Attardi, G., Chomyn, A., Montoya, J., Ojala, D. Identification and mapping of human mitochondrial genes. Cytogenet. Cell Genet. 32: 85-98, 1982. [PubMed: 7140372, related citations] [Full Text]

  5. Brown, M. D., Starikovskaya, E., Derbeneva, O., Hosseini, S., Allen, J. C., Mikhailovskaya, I. E., Sukernik, R. I., Wallace, D. C. The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup J. Hum. Genet. 110: 130-138, 2002. [PubMed: 11935318, related citations] [Full Text]

  6. Case, J. T., Wallace, D. C. Maternal inheritance of mitochondrial DNA polymorphisms in cultured human fibroblasts. Somat. Cell Genet. 7: 103-108, 1981. [PubMed: 6261411, related citations] [Full Text]

  7. Chomyn, A., Cleeter, W. J., Ragan, C. I., Riley, M., Doolittle, R. F., Attardi, G. URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 234: 614-618, 1986. [PubMed: 3764430, related citations] [Full Text]

  8. Chomyn, A., Mariottini, P., Cleeter, M. W. J., Ragan, C. I., Matsuno-Yagi, A., Hatefi, Y., Doolittle, R. G., Attardi, G. Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314: 592-597, 1985. [PubMed: 3921850, related citations] [Full Text]

  9. Giles, R. E., Blanc, H., Cann, H. M., Wallace, D. C. Maternal inheritance of human mitochondrial DNA. Proc. Nat. Acad. Sci. 77: 6715-6719, 1980. [PubMed: 6256757, related citations] [Full Text]

  10. Li, Q., Wang, L., Dong, C., Che, Y., Jiang, L., Liu, L., Zhao, H., Liao, Y., Sheng, Y., Dong, S., Ma, S. The interaction of the SARS coronavirus non-structural protein 10 with the cellular oxido-reductase system causes an extensive cytopathic effect. J. Clin. Virol. 34: 133-139, 2005. [PubMed: 16157265, related citations] [Full Text]

  11. Montoya, J., Ojala, D., Attardi, G. Distinctive features of the 5-prime-terminal sequences of the human mitochondrial mRNAs. Nature 290: 465-470, 1981. [PubMed: 7219535, related citations] [Full Text]

  12. Ojala, D., Montoya, J., Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 290: 470-474, 1981. [PubMed: 7219536, related citations] [Full Text]

  13. Oliver, N. A., McCarthy, J., Wallace, D. C. Comparison of mitochondrially synthesized polypeptides of human, mouse, and monkey cell lines by a two-dimensional protease gel system. Somat. Cell Molec. Genet. 10: 639-643, 1984. [PubMed: 6438810, related citations] [Full Text]

  14. Oliver, N. A., Wallace, D. C. Assignment of two mitochondrially synthesized polypeptides to human mitochondrial DNA and their use in the study of intracellular mitochondrial interaction. Molec. Cell. Biol. 2: 30-41, 1982. [PubMed: 6955589, related citations] [Full Text]

  15. Polyak, K., Li, Y., Zhu, H., Lengauer, C., Willson, J. K. V., Markowitz, S. D., Trush, M. A., Kinzler, K. W., Vogelstein, B. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genet. 20: 291-293, 1998. [PubMed: 9806551, related citations] [Full Text]

  16. Ragan, C. I. Structure of NADH-ubiquinone reductase (complex I). Curr. Top. Bioenerg. 15: 1-36, 1987.

  17. Shoffner, J. M., Wallace, D. C. Oxidative phosphorylation diseases.In: Scriver, C. R.; Beaudet, A. L.; Sly, W. S.; Valle, D. (eds.) : The Metabolic and Molecular Bases of Inherited Disease. Vol. 1. New York: McGraw-Hill (pub.) 1995. Pp. 1535-1609.

  18. Walker, J. E., Arizmendi, J. M., Dupuis, A., Fearnley, I. M., Finel, M., Medd, S. M., Pilkington, S. J., Runswick, M. J., Skehel, J. M. Sequences of 20 subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria: application of a novel strategy for sequencing proteins using the polymerase chain reaction. J. Molec. Biol. 226: 1051, 1992. [PubMed: 1518044, related citations] [Full Text]

  19. Wallace, D. C., Lott, M. T., Torroni, A., Brown, M. D., Shoffner, J. M. Report of the committee on human mitochondrial DNA.In: Cuticchia, A. J.; Pearson, P. L. (eds.) : Human Gene Mapping, 1993: A Compendium. Baltimore: Johns Hopkins Univ. Press (pub.) 1994. Pp. 813-845.

  20. Wallace, D. C., Yang, J., Ye, J., Lott, M. T., Oliver, N. A., McCarthy, J. Computer prediction of peptide maps: Assignment of polypeptides to human and mouse mitochondrial DNA genes by analysis of two-dimensional-proteolytic digest gels. Am. J. Hum. Genet. 38: 461, 1986. [PubMed: 3518425, related citations]

  21. Warburg, O. On the origin of cancer cells. Science 123: 309-314, 1956. [PubMed: 13298683, related citations] [Full Text]


Bao Lige - updated : 04/12/2021
Victor A. McKusick - updated : 3/4/2002
Victor A. McKusick - updated : 6/15/1999
Douglas C. Wallace - updated : 4/6/1994
Creation Date:
Victor A. McKusick : 3/2/1993
mgross : 06/11/2021
carol : 04/13/2021
mgross : 04/12/2021
carol : 07/08/2016
terry : 11/3/2010
carol : 1/19/2010
terry : 8/26/2008
mgross : 3/11/2002
terry : 3/4/2002
alopez : 3/14/2000
jlewis : 6/23/1999
jlewis : 6/21/1999
jlewis : 6/21/1999
jlewis : 6/17/1999
terry : 6/15/1999
dholmes : 4/17/1998
terry : 1/21/1997
mark : 4/9/1996
mark : 6/19/1995
pfoster : 8/16/1994
davew : 7/21/1994
mimadm : 4/26/1994
carol : 5/17/1993

* 516004

COMPLEX I, SUBUNIT ND4L; MTND4L


Alternative titles; symbols

NADH-UBIQUINONE OXIDOREDUCTASE, SUBUNIT ND4L
NADH DEHYDROGENASE, SUBUNIT 4L; NADH4L


HGNC Approved Gene Symbol: MT-ND4L

SNOMEDCT: 58610003;   ICD10CM: H47.22;  



TEXT

Description

Subunit 4L is 1 of the 7 mitochondrial DNA (mtDNA)-encoded subunits (MTND1, MTND2, MTND3, MTND4, MTND4L, MTND5, MTND6) included among the approximately 41 polypeptides of respiratory Complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3) (Shoffner and Wallace, 1995; Arizmendi et al., 1992; Walker et al., 1992; Anderson et al., 1981; Attardi et al., 1986; Chomyn et al. (1985, 1986); Wallace et al., 1986; Oliver and Wallace, 1982; Wallace et al., 1994). Complex I accepts electrons from NADH, transfers them to ubiquinone (coenzyme Q10), and uses the energy released to pump protons out across the mitochondrial inner membrane. Complex I is more fully described under 516000. MTND4L is probably a component of the hydrophobic protein fragment of the complex (Ragan, 1987).


Mapping

MTND4L is encoded by the guanine-rich heavy (H) strand of the mtDNA and located between nucleotide pairs (nps) 10470 and 10766 (Anderson et al., 1981; Wallace et al., 1994). It is maternally inherited along with the mtDNA (Giles et al., 1980; Case and Wallace, 1981).


Gene Structure

The MTND4L gene encompasses 285 nps of continuous coding sequence and lacks introns. It is a part of a bicistronic mRNA, occupying the 5-prime end while its companion gene, MTND4, occupies the 3-prime end. This mRNA begins with the AUG methionine codon of MTND4L and ends with a stop codon. The terminal 7 nps of MTND4L overlap with the initiation methionine and the next leucine of MTND4 (Anderson et al., 1981). The bicistronic MTND4L+MTND5 mRNA is transcribed as a part of the polycistronic H-strand transcript, flanked by tRNAArg at the 5-prime end and tRNAHis at the 3-prime end. These tRNAs are cleaved from the transcript freeing transcript 7, the MTND4L+MTND4 mRNA. The mRNA is then polyadenylated completing the MTND4 termination codon (Anderson et al., 1981; Ojala et al., 1981; Attardi et al., 1982; Wallace et al., 1994).


Gene Function

The predicted polypeptide molecular weight is 10.7 kD (Anderson et al., 1981; Wallace et al., 1994). However, the apparent molecular weight upon SDS-polyacrylamide gel electrophoresis (PAGE) using Tris-glycine buffer is 14.5 kD (Wallace et al., 1986; Oliver et al., 1984) whereas for urea-phosphate gels, it is 3.5 kD (Chomyn et al., 1985).

Using a yeast 2-hybrid screen and pull-down assays, Li et al. (2005) found that nonstructural protein-10 (NSP10) of SARS coronavirus interacted with components of cellular mitochondria, including NADH4L and cytochrome oxidase II (MTCO2; 516040). Human cells transfected with NSP10 showed altered NADH-cytochrome activity and depolarization of the inner mitochondrial membrane. Moreover, NSP10 appeared to amplify the cytopathic effect of infection with the coronavirus 229E strain.


Molecular Genetics

Restriction site polymorphisms have been identified at the following nucleotide position for the indicated enzymes (where '+' = site gain, '-' = site loss relative to the reference sequence, Anderson et al., 1981): Alu I: +10536/10413, -10598, +10694; Dde I: -10631, +10746; Hae III: -10689, +10725; Rsa I: +10644, +10656, -10737 (Wallace et al., 1994).


ALLELIC VARIANTS 2 Selected Examples):

.0001   COLORECTAL CANCER

MTND4L, CYS32ARG
SNP: rs267606892, ClinVar: RCV000010352

Early on, Warburg (1956) suggested that alterations of oxidative phosphorylation in tumor cells play a causative role in cancerous growth. Interest in the mitochondria with regard to neoplasia has revived, largely because of their role in apoptosis and other aspects of tumor biology. The mitochondrial genome is particularly susceptible to mutations because of the high level of reactive oxygen species (ROS) generated in this organelle, coupled with a low level of DNA repair. In a colorectal cancer, Polyak et al. (1998) found a 10563T-C transition resulting in a cys32-to-arg amino acid substitution in the MTND4L protein.


.0002   LEBER OPTIC ATROPHY

MTND4L, 10663T-C
SNP: rs1556423844, ClinVar: RCV000010353, RCV003153302

Approximately 90% of Leber optic atrophy (LHON; 535000) cases are caused by 3460A (516000.0001), 11778A (516003.0001), or 14484C (516006.0001) mtDNA mutations. These are designated 'primary' mutations because they impart a high risk for LHON expression. The 11778A and 14484C mutations are preferentially associated with mtDNA haplogroup J, 1 of 9 Western Eurasian mtDNA lineages, suggesting a synergistic and deleterious interaction between these LHON mutations and haplogroup J polymorphism(s). Brown et al. (2002) reported a novel primary LHON mutation in the ND4L gene. A homoplasmic T-to-C transition at nucleotide 10663 was found in 3 independent LHON patients who lacked a known primary mutation and all of whom belonged to haplogroup J. Phylogenetic analysis with primarily complete mtDNA sequence data demonstrated that the 10663C mutation had arisen at least 3 independent times in haplogroup J, indicating that it is not a rare lineage-specific polymorphism. Analysis of complex I function in patient lymphoblasts and transmitochondrial cybrids revealed a partial complex I defect similar in magnitude to the 14484C mutation. Brown et al. (2002) concluded that 10663C is a primary LHON mutation that is pathogenic when cooccurring with haplogroup J. The results supported a role for haplogroup J in the expression of certain LHON mutations.


See Also:

Montoya et al. (1981)

REFERENCES

  1. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., Young, I. G. Sequence and organization of the human mitochondrial genome. Nature 290: 457-465, 1981. [PubMed: 7219534] [Full Text: https://doi.org/10.1038/290457a0]

  2. Arizmendi, J. M., Skehel, J. M., Runswick, M. J., Fearnley, I. M., Walker, J. E. Complementary DNA sequences of two 14.5 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria: complementation of the primary structure of the complex FEBS Lett. 313: 80-84, 1992. [PubMed: 1426273] [Full Text: https://doi.org/10.1016/0014-5793(92)81189-s]

  3. Attardi, G., Chomyn, A., Doolittle, R. F., Mariottini, P., Ragan, C. I. Seven unidentified reading frames of human mitochondrial DNA encode subunits of the respiratory chain NADH dehydrogenase. Cold Spring Harbor Symp. Quant. Biol. 51: 103-114, 1986. [PubMed: 3472707] [Full Text: https://doi.org/10.1101/sqb.1986.051.01.013]

  4. Attardi, G., Chomyn, A., Montoya, J., Ojala, D. Identification and mapping of human mitochondrial genes. Cytogenet. Cell Genet. 32: 85-98, 1982. [PubMed: 7140372] [Full Text: https://doi.org/10.1159/000131689]

  5. Brown, M. D., Starikovskaya, E., Derbeneva, O., Hosseini, S., Allen, J. C., Mikhailovskaya, I. E., Sukernik, R. I., Wallace, D. C. The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup J. Hum. Genet. 110: 130-138, 2002. [PubMed: 11935318] [Full Text: https://doi.org/10.1007/s00439-001-0660-8]

  6. Case, J. T., Wallace, D. C. Maternal inheritance of mitochondrial DNA polymorphisms in cultured human fibroblasts. Somat. Cell Genet. 7: 103-108, 1981. [PubMed: 6261411] [Full Text: https://doi.org/10.1007/BF01544751]

  7. Chomyn, A., Cleeter, W. J., Ragan, C. I., Riley, M., Doolittle, R. F., Attardi, G. URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 234: 614-618, 1986. [PubMed: 3764430] [Full Text: https://doi.org/10.1126/science.3764430]

  8. Chomyn, A., Mariottini, P., Cleeter, M. W. J., Ragan, C. I., Matsuno-Yagi, A., Hatefi, Y., Doolittle, R. G., Attardi, G. Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314: 592-597, 1985. [PubMed: 3921850] [Full Text: https://doi.org/10.1038/314592a0]

  9. Giles, R. E., Blanc, H., Cann, H. M., Wallace, D. C. Maternal inheritance of human mitochondrial DNA. Proc. Nat. Acad. Sci. 77: 6715-6719, 1980. [PubMed: 6256757] [Full Text: https://doi.org/10.1073/pnas.77.11.6715]

  10. Li, Q., Wang, L., Dong, C., Che, Y., Jiang, L., Liu, L., Zhao, H., Liao, Y., Sheng, Y., Dong, S., Ma, S. The interaction of the SARS coronavirus non-structural protein 10 with the cellular oxido-reductase system causes an extensive cytopathic effect. J. Clin. Virol. 34: 133-139, 2005. [PubMed: 16157265] [Full Text: https://doi.org/10.1016/j.jcv.2004.12.019]

  11. Montoya, J., Ojala, D., Attardi, G. Distinctive features of the 5-prime-terminal sequences of the human mitochondrial mRNAs. Nature 290: 465-470, 1981. [PubMed: 7219535] [Full Text: https://doi.org/10.1038/290465a0]

  12. Ojala, D., Montoya, J., Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 290: 470-474, 1981. [PubMed: 7219536] [Full Text: https://doi.org/10.1038/290470a0]

  13. Oliver, N. A., McCarthy, J., Wallace, D. C. Comparison of mitochondrially synthesized polypeptides of human, mouse, and monkey cell lines by a two-dimensional protease gel system. Somat. Cell Molec. Genet. 10: 639-643, 1984. [PubMed: 6438810] [Full Text: https://doi.org/10.1007/BF01535230]

  14. Oliver, N. A., Wallace, D. C. Assignment of two mitochondrially synthesized polypeptides to human mitochondrial DNA and their use in the study of intracellular mitochondrial interaction. Molec. Cell. Biol. 2: 30-41, 1982. [PubMed: 6955589] [Full Text: https://doi.org/10.1128/mcb.2.1.30-41.1982]

  15. Polyak, K., Li, Y., Zhu, H., Lengauer, C., Willson, J. K. V., Markowitz, S. D., Trush, M. A., Kinzler, K. W., Vogelstein, B. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genet. 20: 291-293, 1998. [PubMed: 9806551] [Full Text: https://doi.org/10.1038/3108]

  16. Ragan, C. I. Structure of NADH-ubiquinone reductase (complex I). Curr. Top. Bioenerg. 15: 1-36, 1987.

  17. Shoffner, J. M., Wallace, D. C. Oxidative phosphorylation diseases.In: Scriver, C. R.; Beaudet, A. L.; Sly, W. S.; Valle, D. (eds.) : The Metabolic and Molecular Bases of Inherited Disease. Vol. 1. New York: McGraw-Hill (pub.) 1995. Pp. 1535-1609.

  18. Walker, J. E., Arizmendi, J. M., Dupuis, A., Fearnley, I. M., Finel, M., Medd, S. M., Pilkington, S. J., Runswick, M. J., Skehel, J. M. Sequences of 20 subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria: application of a novel strategy for sequencing proteins using the polymerase chain reaction. J. Molec. Biol. 226: 1051, 1992. [PubMed: 1518044] [Full Text: https://doi.org/10.1016/0022-2836(92)91052-q]

  19. Wallace, D. C., Lott, M. T., Torroni, A., Brown, M. D., Shoffner, J. M. Report of the committee on human mitochondrial DNA.In: Cuticchia, A. J.; Pearson, P. L. (eds.) : Human Gene Mapping, 1993: A Compendium. Baltimore: Johns Hopkins Univ. Press (pub.) 1994. Pp. 813-845.

  20. Wallace, D. C., Yang, J., Ye, J., Lott, M. T., Oliver, N. A., McCarthy, J. Computer prediction of peptide maps: Assignment of polypeptides to human and mouse mitochondrial DNA genes by analysis of two-dimensional-proteolytic digest gels. Am. J. Hum. Genet. 38: 461, 1986. [PubMed: 3518425]

  21. Warburg, O. On the origin of cancer cells. Science 123: 309-314, 1956. [PubMed: 13298683] [Full Text: https://doi.org/10.1126/science.123.3191.309]


Contributors:
Bao Lige - updated : 04/12/2021
Victor A. McKusick - updated : 3/4/2002
Victor A. McKusick - updated : 6/15/1999
Douglas C. Wallace - updated : 4/6/1994

Creation Date:
Victor A. McKusick : 3/2/1993

Edit History:
mgross : 06/11/2021
carol : 04/13/2021
mgross : 04/12/2021
carol : 07/08/2016
terry : 11/3/2010
carol : 1/19/2010
terry : 8/26/2008
mgross : 3/11/2002
terry : 3/4/2002
alopez : 3/14/2000
jlewis : 6/23/1999
jlewis : 6/21/1999
jlewis : 6/21/1999
jlewis : 6/17/1999
terry : 6/15/1999
dholmes : 4/17/1998
terry : 1/21/1997
mark : 4/9/1996
mark : 6/19/1995
pfoster : 8/16/1994
davew : 7/21/1994
mimadm : 4/26/1994
carol : 5/17/1993