[Intervention by nitric oxide, NO, and its oxide derivatives particularly in mammals]

Can J Physiol Pharmacol. 2001 Feb;79(2):95-102.
[Article in French]

Abstract

Nitric oxide (NO) is a natural and stable free radical produced in soil and water by the bacteriological reduction of nitrites and nitrates and in animals by the enzyme oxidation of L-arginine. NO is biosynthesised by finely regulated enzymatic systems called NO-synthases and readily diffuses through tissues. It reacts rapidly with hemoproteins and iron-sulphur centers to form nitrosylated compounds. It oxidises more slowly to form nitrogen oxides that nitrosate thiols into thionitrite. NO is transported in these various forms and released spontaneously or through yet unclear mechanisms into most cells; it also regulates oxygen consumption at the mitochondrial respiratory chain level through interaction with cytochrome oxidase. In the cardiovascular system, NO lowers blood pressure by activating a hemoprotein, the guanylate cyclase present in muscle cells; through such interaction it acts also as a neuromediator and neuromodulator in the nervous system. However, many of NO's roles result from rapid coupling to other radicals; for example, it reacts with the superoxide anion (O2-) to form oxoperoxinitrate (ONOO-, also known as peroxynitrite). This strong oxidant of metallic centers, thiols, and antioxidants is also able to convert tyrosine to 3-nitrotyrosine and to act upon tyrosine residues contained in proteins. The biological aspects of the roles of NO are presented with particular respect to the rapid interactions of NO with hemoproteins' iron and other radicals. Concurrently, NO oxidation enables nitrosation reactions primarily of thiols but ultimately of nucleic bases. The thionitrite function (R-S-NO) thus formed and the dimerisation and nitration of tyrosine residues are protein post-translational modifications that are being investigated in animals.

Publication types

  • English Abstract
  • Review

MeSH terms

  • Animals
  • Humans
  • Mammals / physiology*
  • Nitrates / metabolism
  • Nitric Oxide / physiology*
  • Protein Processing, Post-Translational
  • Superoxides / metabolism
  • Tyrosine / metabolism

Substances

  • Nitrates
  • Superoxides
  • peroxynitric acid
  • Nitric Oxide
  • Tyrosine