Cl atom-initiated oxidation of three homologous methyl perfluoroalkyl ethers

Environ Sci Technol. 2001 Jan 1;35(1):114-20. doi: 10.1021/es000895f.

Abstract

Chlorine atom-initiated photooxidations of three homologous methyl perfluoroalkyl ethers (HFEs), n-C(n)F(2n+1)OCH3 (n = 2, 3, and 5), in air in the absence of NOx were investigated with a long path FTIR/photochemical reaction system to elucidate the degradation mechanisms. The environmental removal processes of these three ethers in the troposphere were estimated. For oxidation of the three ethers, perfluoroalkyl formates (C(n)F(2n+1)OCHO; n = 2, 3 and 5) as relatively stable intermediates were produced at unity of the production ratio, which was independent of the perfluoroalkyl length. The rate constants for the reaction of Cl atoms with C2F5OCHO, C3F7OCHO, and C5F11OCHO were (1.2 +/- 0.5) x 10(-14), (1.2 +/- 0.5) x 10(-14), and (1.8 +/- 0.7) x 10(-14) cm3 molecule(-1) s(-1), respectively. The rate constants of the reaction of Cl with produced perfluoroalkyl formates were larger than these of perfluoroalkyl ethers. The formyl group of the perfluoroalkyl formates was finally converted to carbon dioxide. The -CF2- of the perfluoroalkyl groups for the three ethers was mainly converted to COF2 through the C-C cleavage; the conversion ratios from the carbons of the perfluoroalkyl group to COF2 were 48 +/- 10, 76 +/- 10, and 60 +/- 10% for C2F5OCH3, n-C3F7OCH3, and n-C5F11OCH3, respectively. Sixteen percent of the perfluoroalkyl group for n-C3F7OCH3 was converted to C2F5COF. Similarly, the perfluoroalkyl group of n-C5F11OCH3 was converted to C(n)F(2n+1)COF (n = 2, 3, and/or 4) with the yield of 15-30%, while for C2F5OCH3, the formation of CF3COF was not confirmed. As an oxidation product of the terminal CF3- group, 20, 22, and 16% of the CF3 group for C2F5OCH3, n-C3F7OCH3, and n-C5F11OCH3, respectively, were converted to CF3OOOCF3.

MeSH terms

  • Biodegradation, Environmental
  • Chlorine / chemistry*
  • Environmental Pollutants / analysis
  • Ethers / chemistry*
  • Magnetic Resonance Spectroscopy
  • Oxidation-Reduction
  • Photochemistry
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Environmental Pollutants
  • Ethers
  • Chlorine