Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen

Cancer Res. 2001 May 15;61(10):3894-901.

Abstract

Transient generation of reactive oxygen or nitrogen (ROS/RNS), detected with dihydrodichlorofluoroscein by fluorescence microscopy, occurs within minutes of exposing cells to ionizing radiation. In the 1-10 Gy dose range, the amount of ROS/RNS produced/cell is constant, but the percentage of producing cells increases with dose (20 to 80%). Reversible depolarization of the mitochondrial membrane potential () and decrease in fluorescence of a mitochondria-entrapped dye, calcein, are observed coincidentally. Radiation-induced ROS/RNS, depolarization, and calcein fluorescence decrease are inhibited by the mitochondrial permeability transition inhibitor, cyclosporin A, but not the structural analogue, cyclosporin H. Radiation-stimulated ROS/RNS is also inhibited by overexpressing the Ca(2+)-binding protein, calbindin 28K, or treating cells with an intracellular Ca(2+) chelator. Radiation-induced ROS/RNS is observed in several cell types with the exception of rho(o) cells deficient in mitochondrial electron transport. rho(o) cells show neither radiation-induced ROS/RNS production nor depolarization. We propose that radiation damage in a few mitochondria is transmitted via a reversible, Ca(2+)-dependent mitochondrial permeability transition to adjacent mitochondria with resulting enhanced ROS/RNS generation. Measurements of radiation-induced mitogen-activated protein kinase activity indicate that this sensing/amplification mechanism is necessary for activation of some cytoplasmic signaling pathways by low doses of radiation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Breast Neoplasms / metabolism
  • CHO Cells / radiation effects
  • Carcinoma, Squamous Cell / metabolism
  • Cell Membrane Permeability / radiation effects
  • Cricetinae
  • Dose-Response Relationship, Radiation
  • Enzyme Activation / radiation effects
  • Humans
  • Intracellular Membranes / radiation effects
  • Male
  • Mitochondria / metabolism
  • Mitochondria / radiation effects*
  • Mitogen-Activated Protein Kinases / metabolism
  • Nitrogen / metabolism*
  • Prostatic Neoplasms / metabolism
  • Reactive Oxygen Species / metabolism*
  • Tumor Cells, Cultured / radiation effects

Substances

  • Reactive Oxygen Species
  • Mitogen-Activated Protein Kinases
  • Nitrogen